Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1717–1737, 2019
https://doi.org/10.5194/amt-12-1717-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1717–1737, 2019
https://doi.org/10.5194/amt-12-1717-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Mar 2019

Research article | 18 Mar 2019

Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer

Mark Richardson et al.
Related authors  
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
Mark Richardson and Graeme L. Stephens
Atmos. Meas. Tech., 11, 1515–1528, https://doi.org/10.5194/amt-11-1515-2018,https://doi.org/10.5194/amt-11-1515-2018, 2018
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech., 12, 5817–5828, https://doi.org/10.5194/amt-12-5817-2019,https://doi.org/10.5194/amt-12-5817-2019, 2019
Short summary
ELIFAN, an algorithm for the estimation of cloud cover from sky imagers
Marie Lothon, Paul Barnéoud, Omar Gabella, Fabienne Lohou, Solène Derrien, Sylvain Rondi, Marjolaine Chiriaco, Sophie Bastin, Jean-Charles Dupont, Martial Haeffelin, Jordi Badosa, Nicolas Pascal, and Nadège Montoux
Atmos. Meas. Tech., 12, 5519–5534, https://doi.org/10.5194/amt-12-5519-2019,https://doi.org/10.5194/amt-12-5519-2019, 2019
Short summary
Estimating solar irradiance using sky imagers
Soumyabrata Dev, Florian M. Savoy, Yee Hui Lee, and Stefan Winkler
Atmos. Meas. Tech., 12, 5417–5429, https://doi.org/10.5194/amt-12-5417-2019,https://doi.org/10.5194/amt-12-5417-2019, 2019
Short summary
Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019,https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019,https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary
Cited articles  
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007. 
Betts, A. K.: Mixing Line Analysis of Clouds and Cloudy Boundary Layers, J. Atmos. Sci., 42, 2751–2763, https://doi.org/10.1175/1520-0469(1985)042<2751:MLAOCA>2.0.CO;2, 1985. 
Boers, R. and Mitchell, R. M.: Absorption feedback in stratocumulus clouds Influence on cloud top albedo, Tellus A, 46, 229–241, https://doi.org/10.3402/tellusa.v46i3.15476, 1994. 
Boesch, H., Brown, L., Castano, R., Christi, M., Connor, B., Crisp, D., Eldering, A., Fisher, B., Frankenberg, C., Gunson, M., Granat, R., McDuffie, J., Miller, C., Natraj, V., O'Brien, D., O'Dell, C., Osterman, G., Oyafuso, F., Payne, V., Polonsky, I., Smyth, M., Spurr, R., Thompson, D., and Toon, G.: Orbiting Carbon Observatory (OCO)-2 Level 2 Full Physics Algorithm Theoretical Basis Document, Pasadena, CA, available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V8.pdf (last access: 10 March 2019), 2017. 
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
Publications Copernicus
Download
Short summary
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting Carbon Observatory-2 (OCO-2) A-band measurements with CALIPSO lidar. This uses cloudy scene data that are not used in OCO-2's main mission, which is aimed at clear-sky atmospheric CO2 abundance. This is the first retrieval using such hyperspectral information and promises to provide a unique constraint on the properties of low liquid clouds over the ocean.
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting...
Citation