Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1717-1737, 2019
https://doi.org/10.5194/amt-12-1717-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1717-1737, 2019
https://doi.org/10.5194/amt-12-1717-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Mar 2019

Research article | 18 Mar 2019

Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer

Mark Richardson et al.
Related authors  
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969-980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
Mark Richardson and Graeme L. Stephens
Atmos. Meas. Tech., 11, 1515-1528, https://doi.org/10.5194/amt-11-1515-2018,https://doi.org/10.5194/amt-11-1515-2018, 2018
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019-2031, https://doi.org/10.5194/amt-12-2019-2019,https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Cloud base height retrieval from multi-angle satellite data
Christoph Böhm, Odran Sourdeval, Johannes Mülmenstädt, Johannes Quaas, and Susanne Crewell
Atmos. Meas. Tech., 12, 1841-1860, https://doi.org/10.5194/amt-12-1841-2019,https://doi.org/10.5194/amt-12-1841-2019, 2019
Short summary
Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697-1716, https://doi.org/10.5194/amt-12-1697-2019,https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space
Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall
Atmos. Meas. Tech., 12, 1755-1766, https://doi.org/10.5194/amt-12-1755-2019,https://doi.org/10.5194/amt-12-1755-2019, 2019
Short summary
An algorithm to retrieve ice water content profiles in cirrus clouds from the synergy of ground-based lidar and thermal infrared radiometer measurements
Friederike Hemmer, Laurent C.-Labonnote, Frédéric Parol, Gérard Brogniez, Bahaiddin Damiri, and Thierry Podvin
Atmos. Meas. Tech., 12, 1545-1568, https://doi.org/10.5194/amt-12-1545-2019,https://doi.org/10.5194/amt-12-1545-2019, 2019
Short summary
Cited articles  
Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007. 
Betts, A. K.: Mixing Line Analysis of Clouds and Cloudy Boundary Layers, J. Atmos. Sci., 42, 2751–2763, https://doi.org/10.1175/1520-0469(1985)042<2751:MLAOCA>2.0.CO;2, 1985. 
Boers, R. and Mitchell, R. M.: Absorption feedback in stratocumulus clouds Influence on cloud top albedo, Tellus A, 46, 229–241, https://doi.org/10.3402/tellusa.v46i3.15476, 1994. 
Boesch, H., Brown, L., Castano, R., Christi, M., Connor, B., Crisp, D., Eldering, A., Fisher, B., Frankenberg, C., Gunson, M., Granat, R., McDuffie, J., Miller, C., Natraj, V., O'Brien, D., O'Dell, C., Osterman, G., Oyafuso, F., Payne, V., Polonsky, I., Smyth, M., Spurr, R., Thompson, D., and Toon, G.: Orbiting Carbon Observatory (OCO)-2 Level 2 Full Physics Algorithm Theoretical Basis Document, Pasadena, CA, available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V8.pdf (last access: 10 March 2019), 2017. 
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
Publications Copernicus
Download
Short summary
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting Carbon Observatory-2 (OCO-2) A-band measurements with CALIPSO lidar. This uses cloudy scene data that are not used in OCO-2's main mission, which is aimed at clear-sky atmospheric CO2 abundance. This is the first retrieval using such hyperspectral information and promises to provide a unique constraint on the properties of low liquid clouds over the ocean.
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting...
Citation