Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1755-2019
https://doi.org/10.5194/amt-12-1755-2019
Research article
 | 
18 Mar 2019
Research article |  | 18 Mar 2019

Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space

Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall

Related authors

Extending the SBUV polar mesospheric cloud data record with the OMPS NP
Matthew T. DeLand and Gary E. Thomas
Atmos. Chem. Phys., 19, 7913–7925, https://doi.org/10.5194/acp-19-7913-2019,https://doi.org/10.5194/acp-19-7913-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023,https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023,https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023,https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Deep convective cloud system size and structure across the global tropics and subtropics
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023,https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023,https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary

Cited articles

AIM CIPS Science Team: Cloud Imaging and Particle Size (CIPS) Instrument Overview, available at: http://lasp.colorado.edu/aim/, last access: 12 March 2019. 
Bailey, S. M., Thomas, G. E., Rusch, D. W., Merkel, A. W., Jeppesen, C., Carstens, J. N., Randall, C. E., McClintock, W. E., and Russell III, J. M.: Phase functions of polar mesospheric cloud ice as observed by the CIPS instrument on the AIM satellite, J. Atmos. Sol.-Terr. Phy., 71, 373–380, https://doi.org/10.1016/j.jastp.2008.09.039, 2009. 
Bardeen, C. G., Toon, O. B., Jensen, E. J., Hervig, M. E., Randall, C. E., Benze, S., Marsh, D. R., and Merkel, A.: Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations, J. Geophys. Res., 115, D10204, https://doi.org/10.1029/2009JD012451, 2010. 
Baumgarten, G., Fiedler, J., and Rapp, M.: On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution, Atmos. Chem. Phys., 10, 6661–6668, https://doi.org/10.5194/acp-10-6661-2010, 2010. 
Benze, S., Randall, C. E., DeLand, M. T., Thomas, G. E., Rusch, D. W., Bailey, S. M., Russell III, J. M., McClintock, W., Merkel, A. W., and Jeppesen, C.: Comparison of polar mesospheric cloud measurements from the Cloud Imaging and Particle Size experiment and the Solar Backscatter Ultraviolet instrument in 2007, J. Atmos. Sol.-Terr. Phy., 71, 365–372, 2009. 
Download
Short summary
Polar mesospheric clouds are an upper atmospheric phenomenon of great interest in that they provide information about a previously inaccessible atmospheric region, the coldest of the planet. This paper provides the basis for converting raw radiance measurements of clouds, made by diverse satellite instrumentation, into a physically based quantity, the cloud ice water content. The new algorithm allows intercomparisons of data collected using diverse optical methods.