Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1841–1860, 2019
https://doi.org/10.5194/amt-12-1841-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1841–1860, 2019
https://doi.org/10.5194/amt-12-1841-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Mar 2019

Research article | 20 Mar 2019

Cloud base height retrieval from multi-angle satellite data

Christoph Böhm et al.

Related authors

Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
Johannes Mülmenstädt, Odran Sourdeval, David S. Henderson, Tristan S. L'Ecuyer, Claudia Unglaub, Leonore Jungandreas, Christoph Böhm, Lynn M. Russell, and Johannes Quaas
Earth Syst. Sci. Data, 10, 2279–2293, https://doi.org/10.5194/essd-10-2279-2018,https://doi.org/10.5194/essd-10-2279-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Exploration of machine learning methods for the classification of infrared limb spectra of polar stratospheric clouds
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020,https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Three-dimensional wind profiles using a stabilized shipborne cloud radar in wind profiler mode
Alain Protat and Ian McRobert
Atmos. Meas. Tech., 13, 3609–3620, https://doi.org/10.5194/amt-13-3609-2020,https://doi.org/10.5194/amt-13-3609-2020, 2020
Short summary
Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm
Daniel J. Miller, Michal Segal-Rozenhaimer, Kirk Knobelspiesse, Jens Redemann, Brian Cairns, Mikhail Alexandrov, Bastiaan van Diedenhoven, and Andrzej Wasilewski
Atmos. Meas. Tech., 13, 3447–3470, https://doi.org/10.5194/amt-13-3447-2020,https://doi.org/10.5194/amt-13-3447-2020, 2020
Short summary
A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020,https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Using Two-Stream Theory to Capture Fluctuations of Satellite-Perceived TOA SW Radiances Reflected from Clouds over Ocean
Florian Tornow, Carlos Domenech, Howard W. Barker, René Preusker, and Jürgen Fischer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-149,https://doi.org/10.5194/amt-2020-149, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Böhm, C.: MIBase cloud base height derived from satellite data, data set, https://doi.org/10.5880/CRC1211DB.19, 2019. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., chap. 7, 571–657, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Bull, M., Matthews, J., McDonald, D., Menzies, A., Moroney, C., Mueller, K., Paradise, S., and Smyth, M.: Data Products Specifications, Tech. Rep. JPL D-13963, Revision S, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 2011. a
Costa-Surós, M., Calbó, J., González, J. A., and Long, C. N.: Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements, Atmos. Meas. Tech., 7, 2757–2773, https://doi.org/10.5194/amt-7-2757-2014, 2014. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Publications Copernicus
Download
Short summary
The cloud base height (CBH) is important for air traffic, for describing the energy budget of the Earth and for other applications. Ground-based CBH measurements are only available for individual sites and mostly limited to land. Satellites are a powerful tool for global coverage. While the cloud top height is derived operationally, the derivation of CBH from space is more difficult as the clouds hide their base. Here, we present a method to retrieve the CBH from multi-angle satellite data.
The cloud base height (CBH) is important for air traffic, for describing the energy budget of...
Citation