Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1871–1888, 2019
https://doi.org/10.5194/amt-12-1871-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1871–1888, 2019
https://doi.org/10.5194/amt-12-1871-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Mar 2019

Research article | 21 Mar 2019

Better turbulence spectra from velocity–azimuth display scanning wind lidar

Felix Kelberlau and Jakob Mann
Related authors  
Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar
Felix Kelberlau and Jakob Mann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-71,https://doi.org/10.5194/wes-2019-71, 2019
Manuscript under review for WES
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019,https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar
Cuong M. Nguyen, Mengistu Wolde, and Alexei Korolev
Atmos. Meas. Tech., 12, 5897–5911, https://doi.org/10.5194/amt-12-5897-2019,https://doi.org/10.5194/amt-12-5897-2019, 2019
Short summary
Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019,https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary
Combined use of volume radar observations and high-resolution numerical weather predictions to estimate precipitation at the ground: methodology and proof of concept
Tony Le Bastard, Olivier Caumont, Nicolas Gaussiat, and Fatima Karbou
Atmos. Meas. Tech., 12, 5669–5684, https://doi.org/10.5194/amt-12-5669-2019,https://doi.org/10.5194/amt-12-5669-2019, 2019
Short summary
A Gaussian mixture method for specific differential phase retrieval at X-band frequency
Guang Wen, Neil I. Fox, and Patrick S. Market
Atmos. Meas. Tech., 12, 5613–5637, https://doi.org/10.5194/amt-12-5613-2019,https://doi.org/10.5194/amt-12-5613-2019, 2019
Short summary
Cited articles  
Bardal, L. M. and Sætran, L. R.: Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines, J. Phys. Conf. Ser., 753, 32–33, https://doi.org/10.1088/1742-6596/753/3/032033, 2016. a
Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind statistics from average spectrum of continuous-wave lidar, Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, 2013. a
Browning, K. A. and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, J. Appl. Meteorol.Clim., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a
Canadillas, B., Bégué, A., and Neumann, T.: Comparison of turbulence spectra derived from LiDAR and sonic measurements at the offshore platform FINO1, 10th German Wind Energy Conference (DEWEK 2010), 17–18 November 2010, Bremen, Germany, 2010. a
Chougule, A., Mann, J., Kelly, M., and Larsen, G.: Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy, J. Atmos. Sci., 74, 949–974, https://doi.org/10.1175/JAS-D-16-0215.1, 2017. a
Publications Copernicus
Download
Short summary
Lidars are devices that can measure wind velocities remotely from the ground. Their estimates are very accurate in the mean but wind speed fluctuations lead to measurement errors. The presented data processing methods mitigate several of the error causes: first, by making use of knowledge about the mean wind direction and, second, by determining the location of air packages and sensing them in the best moment. Both methods can be applied to existing wind lidars and results are very promising.
Lidars are devices that can measure wind velocities remotely from the ground. Their estimates...
Citation