Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1955-1977, 2019
https://doi.org/10.5194/amt-12-1955-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 12, 1955-1977, 2019
https://doi.org/10.5194/amt-12-1955-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Mar 2019

Research article | 27 Mar 2019

Retrieval of water vapor using ground-based observations from a prototype ATOMMS active centimeter- and millimeter-wavelength occultation instrument

Dale M. Ward et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Dale Ward on behalf of the Authors (21 Aug 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (22 Aug 2018) by Isaac Moradi
RR by David Adams (11 Sep 2018)
ED: Publish subject to minor revisions (review by editor) (19 Sep 2018) by Isaac Moradi
ED: Publish subject to minor revisions (review by editor) (26 Sep 2018) by Isaac Moradi
AR by Dale Ward on behalf of the Authors (06 Oct 2018)  Author's response    Manuscript
ED: Publish as is (10 Oct 2018) by Isaac Moradi
Publications Copernicus
Download
Short summary
Satellite-to-satellite occultations near 22 and 183 GHz water absorption lines promise to profile the atmosphere with unprecedented performance needed for forecasting weather and climate. We describe measurements made with a prototype instrument between mountaintops during a thunderstorm that determined water vapor to better than 1 %, even when cloud and rain attenuated the signals. The precision and dynamic range far exceeded present instruments and are similar to theoretical expectations.
Satellite-to-satellite occultations near 22 and 183 GHz water absorption lines promise to...
Citation