Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1955–1977, 2019
https://doi.org/10.5194/amt-12-1955-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 12, 1955–1977, 2019
https://doi.org/10.5194/amt-12-1955-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Mar 2019

Research article | 27 Mar 2019

Retrieval of water vapor using ground-based observations from a prototype ATOMMS active centimeter- and millimeter-wavelength occultation instrument

Dale M. Ward et al.

Viewed

Total article views: 1,195 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
830 341 24 1,195 28 40
  • HTML: 830
  • PDF: 341
  • XML: 24
  • Total: 1,195
  • BibTeX: 28
  • EndNote: 40
Views and downloads (calculated since 26 Jul 2017)
Cumulative views and downloads (calculated since 26 Jul 2017)

Viewed (geographical distribution)

Total article views: 1,084 (including HTML, PDF, and XML) Thereof 1,078 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 14 Jul 2020
Publications Copernicus
Download
Short summary
Satellite-to-satellite occultations near 22 and 183 GHz water absorption lines promise to profile the atmosphere with unprecedented performance needed for forecasting weather and climate. We describe measurements made with a prototype instrument between mountaintops during a thunderstorm that determined water vapor to better than 1 %, even when cloud and rain attenuated the signals. The precision and dynamic range far exceeded present instruments and are similar to theoretical expectations.
Satellite-to-satellite occultations near 22 and 183 GHz water absorption lines promise to...
Citation