Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
AMT | Articles | Volume 12, issue 4
Atmos. Meas. Tech., 12, 2261-2285, 2019
https://doi.org/10.5194/amt-12-2261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: CALIPSO version 4 algorithms and data products

Atmos. Meas. Tech., 12, 2261-2285, 2019
https://doi.org/10.5194/amt-12-2261-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Apr 2019

Research article | 12 Apr 2019

Application of high-dimensional fuzzy k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination

Shan Zeng et al.
Related authors  
Discriminating between clouds and aerosols in the CALIOP version 4.1 data products
Zhaoyan Liu, Jayanta Kar, Shan Zeng, Jason Tackett, Mark Vaughan, Melody Avery, Jacques Pelon, Brian Getzewich, Kam-Pui Lee, Brian Magill, Ali Omar, Patricia Lucker, Charles Trepte, and David Winker
Atmos. Meas. Tech., 12, 703-734, https://doi.org/10.5194/amt-12-703-2019,https://doi.org/10.5194/amt-12-703-2019, 2019
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
FRESCO-B: a fast cloud retrieval algorithm using oxygen B-band measurements from GOME-2
Marine Desmons, Ping Wang, Piet Stammes, and L. Gijsbert Tilstra
Atmos. Meas. Tech., 12, 2485-2498, https://doi.org/10.5194/amt-12-2485-2019,https://doi.org/10.5194/amt-12-2485-2019, 2019
Short summary
Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019-2031, https://doi.org/10.5194/amt-12-2019-2019,https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Cloud base height retrieval from multi-angle satellite data
Christoph Böhm, Odran Sourdeval, Johannes Mülmenstädt, Johannes Quaas, and Susanne Crewell
Atmos. Meas. Tech., 12, 1841-1860, https://doi.org/10.5194/amt-12-1841-2019,https://doi.org/10.5194/amt-12-1841-2019, 2019
Short summary
Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach
Antonio Di Noia, Otto P. Hasekamp, Bastiaan van Diedenhoven, and Zhibo Zhang
Atmos. Meas. Tech., 12, 1697-1716, https://doi.org/10.5194/amt-12-1697-2019,https://doi.org/10.5194/amt-12-1697-2019, 2019
Short summary
Albedo-Ice Regression method for determining ice water content of polar mesospheric clouds using ultraviolet observations from space
Gary E. Thomas, Jerry Lumpe, Charles Bardeen, and Cora E. Randall
Atmos. Meas. Tech., 12, 1755-1766, https://doi.org/10.5194/amt-12-1755-2019,https://doi.org/10.5194/amt-12-1755-2019, 2019
Short summary
Cited articles  
Avery, M. A., Ryan, R., Getzewich, B., Vaughan, M., Winker, D., Hu, Y., and Trepte, C.: Impact of Near-Nadir Viewing Angles on CALIOP V4.1 Cloud Thermodynamic Phase Assignments, in preparation, 2019. 
Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981. 
Bezdek, J. C., Ehrlich, R., and Full, W.: FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191–203, 1984. 
Burrough P. A. and McDonnell R. A.: Principles of Geographic Information Systems, Oxford University Press, Oxford, 1998. 
Burrough, P. A., Van Gaans, P. F. M., and MacMillan, R. A.: High-resolution landform classification using fuzzy K-means, Fuzzy Set. Syst., 113, 37–52, 2000. 
Publications Copernicus
Download
Short summary
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol discrimination (CAD) algorithm to correctly distinguish between clouds and aerosols detected in the CALIPSO lidar backscatter signals. FKM is an unsupervised learning algorithm, so the classifications it derives are wholly independent from those reported by the CAD scheme. For a full month of measurements, the two techniques agree in ~ 95 % of all cases, providing strong evidence for CAD correctness.
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol...
Citation