Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
AMT | Articles | Volume 12, issue 4
Atmos. Meas. Tech., 12, 2287-2312, 2019
https://doi.org/10.5194/amt-12-2287-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 2287-2312, 2019
https://doi.org/10.5194/amt-12-2287-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Apr 2019

Research article | 12 Apr 2019

Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples

Matteo Reggente et al.
Related authors  
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States, part I: Methods
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-144,https://doi.org/10.5194/amt-2019-144, 2019
Manuscript under review for AMT
Short summary
An open platform for Aerosol InfraRed Spectroscopy analysis – AIRSpec
Matteo Reggente, Rudolf Höhn, and Satoshi Takahama
Atmos. Meas. Tech., 12, 2313-2329, https://doi.org/10.5194/amt-12-2313-2019,https://doi.org/10.5194/amt-12-2313-2019, 2019
Short summary
Atmospheric particulate matter characterization by Fourier transform infrared spectroscopy: a review of statistical calibration strategies for carbonaceous aerosol quantification in US measurement networks
Satoshi Takahama, Ann M. Dillner, Andrew T. Weakley, Matteo Reggente, Charlotte Bürki, Mária Lbadaoui-Darvas, Bruno Debus, Adele Kuzmiakova, and Anthony S. Wexler
Atmos. Meas. Tech., 12, 525-567, https://doi.org/10.5194/amt-12-525-2019,https://doi.org/10.5194/amt-12-525-2019, 2019
Short summary
Predicting ambient aerosol thermal–optical reflectance (TOR) measurements from infrared spectra: extending the predictions to different years and different sites
Matteo Reggente, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 9, 441-454, https://doi.org/10.5194/amt-9-441-2016,https://doi.org/10.5194/amt-9-441-2016, 2016
Short summary
Related subject area  
Subject: Aerosols | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Aerosol light absorption from optical measurements of PTFE membrane filter samples: sensitivity analysis of optical depth measures
Apoorva Pandey, Nishit J. Shetty, and Rajan K. Chakrabarty
Atmos. Meas. Tech., 12, 1365-1373, https://doi.org/10.5194/amt-12-1365-2019,https://doi.org/10.5194/amt-12-1365-2019, 2019
Short summary
Strategies of Method Selection for Fine Scale PM2.5 Mapping in Intra-Urban Area Under Crowdsourcing Monitoring
Shan Xu, Bin Zou, Yan Lin, Xiuge Zhao, Shenxin Li, and Chengxia Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-402,https://doi.org/10.5194/amt-2018-402, 2019
Revised manuscript accepted for AMT
Short summary
The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog
Rohan Jayaratne, Xiaoting Liu, Phong Thai, Matthew Dunbabin, and Lidia Morawska
Atmos. Meas. Tech., 11, 4883-4890, https://doi.org/10.5194/amt-11-4883-2018,https://doi.org/10.5194/amt-11-4883-2018, 2018
Short summary
Field and laboratory evaluation of a high time resolution x-ray fluorescence instrument for determining the elemental composition of ambient aerosols
Anja H. Tremper, Anna Font, Max Priestman, Samera H. Hamad, Tsai-Chia Chung, Ari Pribadi, Richard J. C. Brown, Sharon L. Goddard, Nathalie Grassineau, Krag Petterson, Frank J. Kelly, and David C. Green
Atmos. Meas. Tech., 11, 3541-3557, https://doi.org/10.5194/amt-11-3541-2018,https://doi.org/10.5194/amt-11-3541-2018, 2018
Short summary
Exploring the applicability and limitations of selected optical scattering instruments for PM mass measurement
Jie Zhang, Joseph P. Marto, and James J. Schwab
Atmos. Meas. Tech., 11, 2995-3005, https://doi.org/10.5194/amt-11-2995-2018,https://doi.org/10.5194/amt-11-2995-2018, 2018
Short summary
Cited articles  
Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O∕C and OM∕OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008. a, b, c
Allen, D. T. and Palen, E.: Recent advances in aerosol analysis by infrared spectroscopy, J. Aerosol Sci., 20, 441–455, https://doi.org/10.1016/0021-8502(89)90078-5, 1989. a, b
Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., and Young, J. R.: Fourier-transform Infrared-spectroscopy of Aerosol Collected In A Low-pressure Impactor (LPI/FTIR) – Method Development and Field Calibration, Aerosol Sci. Technol., 21, 325–342, https://doi.org/10.1080/02786829408959719, 1994. a, b
Alsberg, B. K., Winson, M. K., and Kell, D. B.: Improving the interpretation of multivariate and rule induction models by using a peak parameter representation, Chemometr. Intell. Lab., 36, 95–109, https://doi.org/10.1016/S0169-7439(97)00024-5, 1997. a
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Stat. Surv., 4, 40–79, https://doi.org/10.1214/09-SS054, 2010. a
Publications Copernicus
Download
Short summary
We compare state-of-the-art models for predicting functional group composition in atmospheric particulate matter across urban and rural samples collected in a US monitoring network. While trends across models are consistent, absolute abundances can be sensitive to selection of calibration standards, spectral processing procedures, and calibration algorithms. Recommendations for further method development for reducing uncertainties are outlined.
We compare state-of-the-art models for predicting functional group composition in atmospheric...
Citation