Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 23-34, 2019
https://doi.org/10.5194/amt-12-23-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 12, 23-34, 2019
https://doi.org/10.5194/amt-12-23-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Jan 2019

Research article | 03 Jan 2019

Atmospheric bending effects in GNSS tomography

Gregor Möller and Daniel Landskron
Related authors  
Cross-validation of GPS tomography models and methodological improvements using CORS network
Hugues Brenot, Witold Rohm, Michal Kačmařík, Gregor Möller, André Sá, Damian Tondaś, Lukas Rapant, Riccardo Biondi, Toby Manning, and Cédric Champollion
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-292,https://doi.org/10.5194/amt-2018-292, 2018
Manuscript under review for AMT
Short summary
Inter-technique validation of tropospheric slant total delays
Michal Kačmařík, Jan Douša, Galina Dick, Florian Zus, Hugues Brenot, Gregor Möller, Eric Pottiaux, Jan Kapłon, Paweł Hordyniec, Pavel Václavovic, and Laurent Morel
Atmos. Meas. Tech., 10, 2183-2208, https://doi.org/10.5194/amt-10-2183-2017,https://doi.org/10.5194/amt-10-2183-2017, 2017
Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products
Jan Douša, Galina Dick, Michal Kačmařík, Radmila Brožková, Florian Zus, Hugues Brenot, Anastasia Stoycheva, Gregor Möller, and Jan Kaplon
Atmos. Meas. Tech., 9, 2989-3008, https://doi.org/10.5194/amt-9-2989-2016,https://doi.org/10.5194/amt-9-2989-2016, 2016
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409-6417, https://doi.org/10.5194/amt-11-6409-2018,https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum
Dominique P. Held and Jakob Mann
Atmos. Meas. Tech., 11, 6339-6350, https://doi.org/10.5194/amt-11-6339-2018,https://doi.org/10.5194/amt-11-6339-2018, 2018
Short summary
Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method
Ali Jalali, Robert J. Sica, and Alexander Haefele
Atmos. Meas. Tech., 11, 6043-6058, https://doi.org/10.5194/amt-11-6043-2018,https://doi.org/10.5194/amt-11-6043-2018, 2018
Short summary
Analysis of the performance of a ship-borne scanning wind lidar in the Arctic and Antarctic
Rolf Zentek, Svenja H. E. Kohnemann, and Günther Heinemann
Atmos. Meas. Tech., 11, 5781-5795, https://doi.org/10.5194/amt-11-5781-2018,https://doi.org/10.5194/amt-11-5781-2018, 2018
Short summary
Retrieval of snowflake microphysical properties from multifrequency radar observations
Jussi Leinonen, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 5471-5488, https://doi.org/10.5194/amt-11-5471-2018,https://doi.org/10.5194/amt-11-5471-2018, 2018
Short summary
Cited articles  
Aghajany, S. H. and Amerian, Y.: Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements, J. Atmos. Sol.-Terr. Phy., 164, 81–88, https://doi.org/10.1016/j.jastp.2017.08.003, 2017. a
Anderson, D. N., Mendillo, M., and Herniter, B.: A semi-empirical low-latitude ionospheric model, Radio Sci., 22, 292–306, https://doi.org/10.1029/RS022i002p00292, 1987. a
Bender, M. and Raabe, A.: Preconditions to ground based GPS water vapour tomography, Ann. Geophys., 25, 1727–1734, https://doi.org/10.5194/angeo-25-1727-2007, 2007. a
Bender, M., Stosius, R., Zus, F., Dick, G., Wickert, J., and Raabe, A.: GNSS water vapour tomography - Expected improvements by combining GPS, GLONASS and Galileo observations, Adv. Space Res., 47, 886–897, https://doi.org/10.1016/j.asr.2010.09.011, 2011. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992. a
Publications Copernicus
Special issue
Download
Short summary
The paper describes a ray-tracing approach for the proper reconstruction of GNSS signal paths through the lower atmosphere, identifies possible error sources during ray tracing and provides a strategy for reducing their effect on the GNSS tomography solution, thereby contributing to a more reliable reconstruction of the 3-D water vapor distribution in the lower atmosphere from GNSS measurements.
The paper describes a ray-tracing approach for the proper reconstruction of GNSS signal paths...
Citation
Share