Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 4
Atmos. Meas. Tech., 12, 2371-2385, 2019
https://doi.org/10.5194/amt-12-2371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 2371-2385, 2019
https://doi.org/10.5194/amt-12-2371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Apr 2019

Research article | 15 Apr 2019

The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band

Michael I. Cotterell et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Michael Cotterell on behalf of the Authors (26 Mar 2019)  Author's response    Manuscript
ED: Publish as is (28 Mar 2019) by Mingjin Tang
Publications Copernicus
Download
Short summary
Photoacoustic spectroscopy provides measurements of absorption coefficient for aerosol and gas samples but requires careful calibration, and researchers often use concentrations of ozone. Recent work has shown that the bath gas composition impacts the accuracy of this calibration at visible wavelengths. We explore further the role of bath gas, demonstrating that the calibration accuracy is optimal for a bath gas composed of 20 % oxygen and 80 % nitrogen at wavelengths of 405, 514 and 658 nm.
Photoacoustic spectroscopy provides measurements of absorption coefficient for aerosol and gas...
Citation