Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 5
Atmos. Meas. Tech., 12, 2595-2610, 2019
https://doi.org/10.5194/amt-12-2595-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 2595-2610, 2019
https://doi.org/10.5194/amt-12-2595-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 06 May 2019

Research article | 06 May 2019

Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India

Konstantina Nakoudi et al.
Related authors  
The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and validation
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-84,https://doi.org/10.5194/amt-2019-84, 2019
Revised manuscript accepted for AMT
Short summary
Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece
Nikolaos Siomos, Dimitris S. Balis, Kalliopi A. Voudouri, Eleni Giannakaki, Maria Filioglou, Vassilis Amiridis, Alexandros Papayannis, and Konstantinos Fragkos
Atmos. Chem. Phys., 18, 11885-11903, https://doi.org/10.5194/acp-18-11885-2018,https://doi.org/10.5194/acp-18-11885-2018, 2018
Short summary
Estimation of atmospheric particle formation rates through an analytical formula: validation and application in Hyytiälä and Puijo, Finland
Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 17, 13361-13371, https://doi.org/10.5194/acp-17-13361-2017,https://doi.org/10.5194/acp-17-13361-2017, 2017
Short summary
Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model
Maria Filioglou, Anna Nikandrova, Sami Niemelä, Holger Baars, Tero Mielonen, Ari Leskinen, David Brus, Sami Romakkaniemi, Elina Giannakaki, and Mika Komppula
Atmos. Meas. Tech., 10, 4303-4316, https://doi.org/10.5194/amt-10-4303-2017,https://doi.org/10.5194/amt-10-4303-2017, 2017
Aerosol–landscape–cloud interaction: signatures of topography effect on cloud droplet formation
Sami Romakkaniemi, Zubair Maalick, Antti Hellsten, Antti Ruuskanen, Olli Väisänen, Irshad Ahmad, Juha Tonttila, Santtu Mikkonen, Mika Komppula, and Thomas Kühn
Atmos. Chem. Phys., 17, 7955-7964, https://doi.org/10.5194/acp-17-7955-2017,https://doi.org/10.5194/acp-17-7955-2017, 2017
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269-3288, https://doi.org/10.5194/amt-12-3269-2019,https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
A new method to determine the aerosol optical properties from multiple-wavelength O4 absorptions by MAX-DOAS observation
Chengzhi Xing, Cheng Liu, Shanshan Wang, Qihou Hu, Haoran Liu, Wei Tan, Wenqiang Zhang, Bo Li, and Jianguo Liu
Atmos. Meas. Tech., 12, 3289-3302, https://doi.org/10.5194/amt-12-3289-2019,https://doi.org/10.5194/amt-12-3289-2019, 2019
Short summary
Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band
Jianglong Zhang, Shawn L. Jaker, Jeffrey S. Reid, Steven D. Miller, Jeremy Solbrig, and Travis D. Toth
Atmos. Meas. Tech., 12, 3209-3222, https://doi.org/10.5194/amt-12-3209-2019,https://doi.org/10.5194/amt-12-3209-2019, 2019
Short summary
Characterization of atmospheric aerosol optical properties based on the combined use of a ground-based Raman lidar and an airborne optical particle counter in the framework of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1
Dario Stelitano, Paolo Di Girolamo, Andrea Scoccione, Donato Summa, and Marco Cacciani
Atmos. Meas. Tech., 12, 2183-2199, https://doi.org/10.5194/amt-12-2183-2019,https://doi.org/10.5194/amt-12-2183-2019, 2019
Short summary
Inversion of multi-angular polarimetric measurements over open and coastal ocean waters: a joint retrieval algorithm for aerosol and water leaving radiance properties
Meng Gao, Peng-Wang Zhai, Bryan Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-67,https://doi.org/10.5194/amt-2019-67, 2019
Revised manuscript accepted for AMT
Cited articles  
Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009. 
Amiridis, V., Melas, D., Balis, D. S., Papayannis, A., Founda, D., Katragkou, E., Giannakaki, E., Mamouri, R. E., Gerasopoulos, E., and Zerefos, C.: Aerosol Lidar observations and model calculations of the Planetary Boundary Layer evolution over Greece, during the March 2006 Total Solar Eclipse, Atmos. Chem. Phys., 7, 6181–6189, https://doi.org/10.5194/acp-7-6181-2007, 2007. 
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurements of aerosol profiles with Raman lidar, Opt. Lett., 15, 746–748, 1990. 
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurements of extinction and backscatter profiles in Cirrus clouds by using a combined Raman elastic-backscatter Lidar, Appl. Optics, 31, 7113–7131, 1992. 
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008. 
Publications Copernicus
Download
Short summary
We characterized the height of the boundary layer (BLH) over New Delhi for almost a year using ground and satellite lidar measurements as well as model simulations. In the presence of multiple aerosol layers, the employed algorithm was very efficient. Due to prevailing meteorological conditions, the seasonal BLH cycle was slightly weaker than the one expected from the climatology. The aim was to assess the feasibility of the employed algorithm and compare the results to independent sources.
We characterized the height of the boundary layer (BLH) over New Delhi for almost a year using...
Citation