Articles | Volume 12, issue 5
https://doi.org/10.5194/amt-12-2665-2019
https://doi.org/10.5194/amt-12-2665-2019
Research article
 | 
09 May 2019
Research article |  | 09 May 2019

Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas

Emmanuel Arzoumanian, Felix R. Vogel, Ana Bastos, Bakhram Gaynullin, Olivier Laurent, Michel Ramonet, and Philippe Ciais

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Felix Vogel on behalf of the Authors (11 Mar 2019)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (26 Mar 2019) by Martin Steinbacher
AR by Felix Vogel on behalf of the Authors (31 Mar 2019)  Author's response    Manuscript
ED: Publish as is (01 Apr 2019) by Martin Steinbacher
Download
Short summary
We tested commercial lower-cost CO2 sensors in laboratory and field studies to see if they can measure atmospheric CO2 mole fractions with less than 1 ppm bias (with monthly calibration), to allow continuous urban CO2 monitoring. We find that the sensors' CO2 readings are influenced by temperature, atmospheric pressure and water vapour content, but this can be corrected for by adding sensors (T, p, RH) and carefully calibrating each sensor against a high-precision instrument.