Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 345-361, 2019
https://doi.org/10.5194/amt-12-345-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 12, 345-361, 2019
https://doi.org/10.5194/amt-12-345-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jan 2019

Research article | 18 Jan 2019

4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF

Witold Rohm et al.
Related authors  
Spatial, temporal and vertical distribution of ammonia concentrations over Europe – comparing a static and dynamic approach with WRF-Chem
M. Werner, M. Kryza, C. Geels, T. Ellermann, and C. Ambelas Skjøth
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-22935-2015,https://doi.org/10.5194/acpd-15-22935-2015, 2015
Revised manuscript not accepted
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric bending effects in GNSS tomography
Gregor Möller and Daniel Landskron
Atmos. Meas. Tech., 12, 23-34, https://doi.org/10.5194/amt-12-23-2019,https://doi.org/10.5194/amt-12-23-2019, 2019
Short summary
Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band?
Xavier Calbet, Niobe Peinado-Galan, Sergio DeSouza-Machado, Emil Robert Kursinski, Pedro Oria, Dale Ward, Angel Otarola, Pilar Rípodas, and Rigel Kivi
Atmos. Meas. Tech., 11, 6409-6417, https://doi.org/10.5194/amt-11-6409-2018,https://doi.org/10.5194/amt-11-6409-2018, 2018
Short summary
Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum
Dominique P. Held and Jakob Mann
Atmos. Meas. Tech., 11, 6339-6350, https://doi.org/10.5194/amt-11-6339-2018,https://doi.org/10.5194/amt-11-6339-2018, 2018
Short summary
Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method
Ali Jalali, Robert J. Sica, and Alexander Haefele
Atmos. Meas. Tech., 11, 6043-6058, https://doi.org/10.5194/amt-11-6043-2018,https://doi.org/10.5194/amt-11-6043-2018, 2018
Short summary
Analysis of the performance of a ship-borne scanning wind lidar in the Arctic and Antarctic
Rolf Zentek, Svenja H. E. Kohnemann, and Günther Heinemann
Atmos. Meas. Tech., 11, 5781-5795, https://doi.org/10.5194/amt-11-5781-2018,https://doi.org/10.5194/amt-11-5781-2018, 2018
Short summary
Cited articles  
Barker, D., Huang, X. Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y. E., Demirtas, M., Guo, Y. R., Henderson, T., Huang, W., Lin, H. C., Michalakes, J., Rizvi, S., and Zhang, X.: The weather research and forecasting model's community variational/ensemble data assimilation system: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012. 
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A. J., and Xiao, Q. N.: A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results, Mon. Weather Rev., 132, 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2, 2004. 
Benjamin, S. G., Brown, J. M., Brundage, K. J., Dévényi, D., Grell, G. A., Kim, D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., Weygandt, S. S., and Manikin, G. S.: RUC20 – The 20-km version of the Rapid Update Cycle, NWS Tech. Proced. Bull., 490, 1–30, available at: http://ruc.noaa.gov/vartxt.html#gust (last access: 17 August 2018), 2002. 
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S., and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016. 
Bennitt, G. V. and Jupp, A.: Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models, Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1, 2012. 
Publications Copernicus
Special issue
Download
Short summary
Assimilation of satellite navigation data into a popular weather model is yet another example of how to turn non-meteorological data into valuable information about the current state of the troposphere. Results show that observations from ground-based GPS receivers can improve humidity and rain forecasts in most severe weather events. It is another reason to extend the adoption of GPS data into weather forecasting across Europe.
Assimilation of satellite navigation data into a popular weather model is yet another example of...
Citation
Share