Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 371–388, 2019
https://doi.org/10.5194/amt-12-371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 371–388, 2019
https://doi.org/10.5194/amt-12-371-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jan 2019

Research article | 18 Jan 2019

The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) version 2: algorithm evolution, dataset description and performance improvements

Elisa Castelli et al.
Related authors  
Lee waves detection over the Mediterranean Sea using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) Total Column Water Vapor (TCWV) dataset
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-105,https://doi.org/10.5194/amt-2019-105, 2019
Revised manuscript accepted for AMT
Short summary
The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018,https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016,https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents
Ugo Cortesi, Samuele Del Bianco, Simone Ceccherini, Marco Gai, Bianca Maria Dinelli, Elisa Castelli, Hermann Oelhaf, Wolfgang Woiwode, Michael Höpfner, and Daniel Gerber
Atmos. Meas. Tech., 9, 2267–2289, https://doi.org/10.5194/amt-9-2267-2016,https://doi.org/10.5194/amt-9-2267-2016, 2016
Measurement of the Arctic UTLS composition in presence of clouds using millimetre-wave heterodyne spectroscopy
E. Castelli, B. M. Dinelli, S. Del Bianco, D. Gerber, B. P. Moyna, R. Siddans, B. J. Kerridge, and U. Cortesi
Atmos. Meas. Tech., 6, 2683–2701, https://doi.org/10.5194/amt-6-2683-2013,https://doi.org/10.5194/amt-6-2683-2013, 2013
Related subject area  
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Sulfur dioxide layer height retrieval from Sentinel-5 Precursor/TROPOMI using FP_ILM
Pascal Hedelt, Dmitry S. Efremenko, Diego G. Loyola, Robert Spurr, and Lieven Clarisse
Atmos. Meas. Tech., 12, 5503–5517, https://doi.org/10.5194/amt-12-5503-2019,https://doi.org/10.5194/amt-12-5503-2019, 2019
Short summary
Tracking down global NH3 point sources with wind-adjusted superresolution
Lieven Clarisse, Martin Van Damme, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Meas. Tech., 12, 5457–5473, https://doi.org/10.5194/amt-12-5457-2019,https://doi.org/10.5194/amt-12-5457-2019, 2019
Short summary
Improving the TROPOMI CO data product: update of the spectroscopic database and destriping of single orbits
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019,https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Validation of OCO-2 error analysis using simulated retrievals
Susan S. Kulawik, Chris O'Dell, Robert R. Nelson, and Thomas E. Taylor
Atmos. Meas. Tech., 12, 5317–5334, https://doi.org/10.5194/amt-12-5317-2019,https://doi.org/10.5194/amt-12-5317-2019, 2019
Short summary
Application of factor and cluster analyses to determine source–receptor relationships of industrial volatile organic odor species in a dual-optical sensing system
Jen-Chih Yang, Pao-Erh Chang, Chi-Chang Ho, and Chang-Fu Wu
Atmos. Meas. Tech., 12, 5347–5362, https://doi.org/10.5194/amt-12-5347-2019,https://doi.org/10.5194/amt-12-5347-2019, 2019
Short summary
Cited articles  
Allan, R. P., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z, 2014. a
Aoki, S., Nakazawa, T., Machida, T., Sugawara, S., Morimoto, S., Hashida, G., Yamanouchi, T., Kawamura, K., and Honda,H.: Carbon dioxide variations in the stratosphere over Japan, Scandinavia and Antarctica, Tellus B, 55, 178–186, 2003. a
ARSA (Analyzed RadioSoundings Archive), available at: http://ara.abct.lmd.polytechnique.fr/index.php?page=arsa, last access: 17 March 2018. a
Berk, A., Acharya, P. K., Bernstein, L. S., Anderson, G. P., Lewis, P., Chetwynd, J. H., and Hoke, M. L.: Band model method for modeling atmospheric propagation at arbitrarily fine spectral resolution, US Patent no. 7433806, 2008. a
Casadio, S., Castelli, E., Papandrea, E., Dinelli, B. M., Pisacane, G., and Bojkov, B.: Total column water vapour from along track scanning radiometer series using thermal infrared dual view ocean cloud free measurements: The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) algorithm, Remote Sens. Environ., 172, 1–14, 2016. a, b, c, d, e, f, g, h, i, j
Publications Copernicus
Download
Short summary
The total column water vapour (TCWV) is a key atmospheric variable. The AIRWAVE (Advanced Infra-Red WAter Vapour Estimator) v1 algorithm was developed to retrieve TCWV from satellite measurements. Comparisons with independent TCWV show good agreement with an overall bias of 0.72 kg m−2 due to the polar and coastal regions. Here, we describe the AIRWAVEv2 dataset, which shows significant improvements with a global bias of 0.02 kg m−2. This dataset was used to produce a climatology from 1991 to 2012.
The total column water vapour (TCWV) is a key atmospheric variable. The AIRWAVE (Advanced...
Citation