Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 389-403, 2019
https://doi.org/10.5194/amt-12-389-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 389-403, 2019
https://doi.org/10.5194/amt-12-389-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jan 2019

Research article | 18 Jan 2019

A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band

Nawo Eguchi and Yukio Yoshida
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Mirena Feist-Polner on behalf of the Authors (15 Nov 2018)  Author's response
ED: Referee Nomination & Report Request started (20 Nov 2018) by Piet Stammes
RR by Anonymous Referee #1 (05 Dec 2018)
RR by Anonymous Referee #3 (13 Dec 2018)
ED: Publish subject to technical corrections (21 Dec 2018) by Piet Stammes
AR by Nawo Eguchi on behalf of the Authors (28 Dec 2018)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels (2  μm) of the solar reflected spectrum observed by the TANSO-FTS on board GOSAT. The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitudes. Approximately 85  % of the results from this method for clouds with a cloud-top altitude above 5  km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification.
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor...
Citation
Share