Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 389–403, 2019
https://doi.org/10.5194/amt-12-389-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 389–403, 2019
https://doi.org/10.5194/amt-12-389-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jan 2019

Research article | 18 Jan 2019

A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band

Nawo Eguchi and Yukio Yoshida
Related authors  
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019,https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017,https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
The role of convective overshooting clouds in tropical stratosphere–troposphere dynamical coupling
K. Kodera, B. M. Funatsu, C. Claud, and N. Eguchi
Atmos. Chem. Phys., 15, 6767–6774, https://doi.org/10.5194/acp-15-6767-2015,https://doi.org/10.5194/acp-15-6767-2015, 2015
Short summary
A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming
N. Eguchi, K. Kodera, and T. Nasuno
Atmos. Chem. Phys., 15, 297–304, https://doi.org/10.5194/acp-15-297-2015,https://doi.org/10.5194/acp-15-297-2015, 2015
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimating solar irradiance using sky imagers
Soumyabrata Dev, Florian M. Savoy, Yee Hui Lee, and Stefan Winkler
Atmos. Meas. Tech., 12, 5417–5429, https://doi.org/10.5194/amt-12-5417-2019,https://doi.org/10.5194/amt-12-5417-2019, 2019
Short summary
Toward autonomous surface-based infrared remote sensing of polar clouds: retrievals of cloud optical and microphysical properties
Penny M. Rowe, Christopher J. Cox, Steven Neshyba, and Von P. Walden
Atmos. Meas. Tech., 12, 5071–5086, https://doi.org/10.5194/amt-12-5071-2019,https://doi.org/10.5194/amt-12-5071-2019, 2019
Short summary
Use of spectral cloud emissivities and their related uncertainties to infer ice cloud boundaries: methodology and assessment using CALIPSO cloud products
Hye-Sil Kim, Bryan A. Baum, and Yong-Sang Choi
Atmos. Meas. Tech., 12, 5039–5054, https://doi.org/10.5194/amt-12-5039-2019,https://doi.org/10.5194/amt-12-5039-2019, 2019
Short summary
The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019,https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat
Pavlos Kollias, Bernat Puigdomènech Treserras, and Alain Protat
Atmos. Meas. Tech., 12, 4949–4964, https://doi.org/10.5194/amt-12-4949-2019,https://doi.org/10.5194/amt-12-4949-2019, 2019
Short summary
Cited articles  
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Dessler, A. E. and Yang, P.: The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data, J. Climate, 16, 1241–1247, https://doi.org/10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2, 2003. a
Eguchi, N. and Kodera, K.: Impacts of Stratospheric Sudden Warming Event on Tropical Clouds and Moisture Fields in the TTL: A Case Study, SOLA, 6, 137–140, https://doi.org/10.2151/sola.2010-035, 2010. a, b
Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810, https://doi.org/10.1029/2007GL029529, 2007. a, b, c
Eguchi, N., Kodera, K., and Nasuno, T.: A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming, Atmos. Chem. Phys., 15, 297–304, https://doi.org/10.5194/acp-15-297-2015, 2015. a, b
Publications Copernicus
Download
Short summary
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels (2  μm) of the solar reflected spectrum observed by the TANSO-FTS on board GOSAT. The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitudes. Approximately 85  % of the results from this method for clouds with a cloud-top altitude above 5  km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification.
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor...
Citation