Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 457–469, 2019
https://doi.org/10.5194/amt-12-457-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Layered phenomena in the mesopause region (ACP/AMT inter-journal...

Atmos. Meas. Tech., 12, 457–469, 2019
https://doi.org/10.5194/amt-12-457-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jan 2019

Research article | 25 Jan 2019

Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations

Patrick Hannawald et al.

Related authors

Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019,https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 5955–5963, https://doi.org/10.5194/amt-9-5955-2016,https://doi.org/10.5194/amt-9-5955-2016, 2016
Short summary
A fast SWIR imager for observations of transient features in OH airglow
Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 1461–1472, https://doi.org/10.5194/amt-9-1461-2016,https://doi.org/10.5194/amt-9-1461-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020,https://doi.org/10.5194/amt-13-2849-2020, 2020
Short summary
Update of Infrared Atmospheric Sounding Interferometer (IASI) channel selection with correlated observation errors for numerical weather prediction (NWP)
Olivier Coopmann, Vincent Guidard, Nadia Fourrié, Béatrice Josse, and Virginie Marécal
Atmos. Meas. Tech., 13, 2659–2680, https://doi.org/10.5194/amt-13-2659-2020,https://doi.org/10.5194/amt-13-2659-2020, 2020
Short summary
Learning about the vertical structure of radar reflectivity using hydrometeor classes and neural networks in the Swiss Alps
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020,https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Toward a variational assimilation of polarimetric radar observations in a convective-scale numerical weather prediction (NWP) model
Guillaume Thomas, Jean-François Mahfouf, and Thibaut Montmerle
Atmos. Meas. Tech., 13, 2279–2298, https://doi.org/10.5194/amt-13-2279-2020,https://doi.org/10.5194/amt-13-2279-2020, 2020
Short summary
Estimating raindrop size distributions using microwave link measurements: potential and limitations
Thomas C. van Leth, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 13, 1797–1815, https://doi.org/10.5194/amt-13-1797-2020,https://doi.org/10.5194/amt-13-1797-2020, 2020
Short summary

Cited articles

Baker, D. J. and Romick, G. J.: The rayleigh: interpretation of the unit in terms of column emission rate or apparent radiance expressed in SI units, Appl. Optics, 15, 1966–1968, 1976. 
Baker, D. J. and Stair Jr., A. T.: Rocket Measurements of the Altitude Distributions of the Hydroxyl Airglow, Phys. Scripta, 37, 611–622, 1988. a
Becker, E.: Sensitivity of the Upper Mesosphere to the Lorenz Energy Cycle of the Troposphere, J. Atmos. Sci., 66, 647–666, https://doi.org/10.1175/2008JAS2735.1, 2009. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2000. a
Coble, M. R., Papen, G. C., and Gardner, C. S.: Computing Two-Dimensional Unambiguous Horizontal Wavenumber Spectra from OH Airglow Images, IEEE T. Geosci. Remote, 36, 368–382, 1998. a
Publications Copernicus
Download
Short summary
We use a near-infrared camera for the investigation of gravity waves. The camera observes the airglow layer, which is modulated by the gravity waves. The image processing, including the removal of the stars is explained. We describe the analysis with a 2D fast Fourier transform and automatic derivation of the wave parameters. The results show a clear seasonal and intra-diurnal variability, which is characterised in order to improve our understanding of gravity waves in the middle atmosphere.
We use a near-infrared camera for the investigation of gravity waves. The camera observes the...
Citation