Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 491–516, 2019
https://doi.org/10.5194/amt-12-491-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 491–516, 2019
https://doi.org/10.5194/amt-12-491-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jan 2019

Research article | 25 Jan 2019

Minimizing aerosol effects on the OMI tropospheric NO2 retrieval – An improved use of the 477 nm O2 − O2 band and an estimation of the aerosol correction uncertainty

Julien Chimot et al.
Related authors  
Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019,https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
Julien Chimot, J. Pepijn Veefkind, Tim Vlemmix, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 2257–2277, https://doi.org/10.5194/amt-11-2257-2018,https://doi.org/10.5194/amt-11-2257-2018, 2018
Short summary
Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Aristeidis K. Georgoulias, Stavros Solomos, Stelios Kazadzis, Julien Chimot, Huizheng Che, Georgia Alexandri, Ioannis Binietoglou, Vasiliki Daskalopoulou, Konstantinos A. Kourtidis, Gerrit de Leeuw, and Ronald J. van der A
Atmos. Chem. Phys., 18, 1337–1362, https://doi.org/10.5194/acp-18-1337-2018,https://doi.org/10.5194/acp-18-1337-2018, 2018
Short summary
An exploratory study on the aerosol height retrieval from OMI measurements of the 477  nm O2 − O2 spectral band using a neural network approach
Julien Chimot, J. Pepijn Veefkind, Tim Vlemmix, Johan F. de Haan, Vassilis Amiridis, Emmanouil Proestakis, Eleni Marinou, and Pieternel F. Levelt
Atmos. Meas. Tech., 10, 783–809, https://doi.org/10.5194/amt-10-783-2017,https://doi.org/10.5194/amt-10-783-2017, 2017
Short summary
Impact of aerosols on the OMI tropospheric NO2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model?
J. Chimot, T. Vlemmix, J. P. Veefkind, J. F. de Haan, and P. F. Levelt
Atmos. Meas. Tech., 9, 359–382, https://doi.org/10.5194/amt-9-359-2016,https://doi.org/10.5194/amt-9-359-2016, 2016
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019,https://doi.org/10.5194/amt-12-4849-2019, 2019
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller
Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019,https://doi.org/10.5194/amt-12-4421-2019, 2019
Short summary
Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: impact of wavelength choice
Gregori de Arruda Moreira, Fábio Juliano da Silva Lopes, Juan Luis Guerrero-Rascado, Jonatan João da Silva, Antonio Arleques Gomes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Meas. Tech., 12, 4261–4276, https://doi.org/10.5194/amt-12-4261-2019,https://doi.org/10.5194/amt-12-4261-2019, 2019
Short summary
Year-round stratospheric aerosol backscatter ratios calculated from lidar measurements above northern Norway
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019,https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Inversion of multiangular polarimetric measurements over open and coastal ocean waters: a joint retrieval algorithm for aerosol and water-leaving radiance properties
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech., 12, 3921–3941, https://doi.org/10.5194/amt-12-3921-2019,https://doi.org/10.5194/amt-12-3921-2019, 2019
Cited articles  
Acarreta, J. R., de Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2−O2 absorption band at 477 nm, J. Geophys. Res.-Atmos., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004. a, b, c, d, e, f, g
Amiridis, V., Marinou, E., Tsekeri, A., Wandinger, U., Schwarz, A., Giannakaki, E., Mamouri, R., Kokkalis, P., Binietoglou, I., Solomos, S., Herekakis, T., Kazadzis, S., Gerasopoulos, E., Proestakis, E., Kottas, M., Balis, D., Papayannis, A., Kontoes, C., Kourtidis, K., Papagiannopoulos, N., Mona, L., Pappalardo, G., Le Rille, O., and Ansmann, A.: LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET, Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, 2015. a
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res.-Atmos., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. a, b, c, d, e
Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007. a
Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011. a, b, c, d, e, f, g, h, i, j
Publications Copernicus
Download
Short summary
The reference OMI tropospheric NO2 product was reprocessed by new aerosol correction parameters retrieved from the 477 nm O2–O2 band over eastern China and South America for 2 years. These new parameters are from different and separate algorithms, allowing improved use of the 477 nm O2–O2 band. All the tested approaches improve the aerosol correction in the OMI tropospheric NO2 product. We demonstrate the possibility of applying an explicit aerosol correction based on the 477 nm O2–O2 band.
The reference OMI tropospheric NO2 product was reprocessed by new aerosol correction parameters...
Citation