Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 11
Atmos. Meas. Tech., 12, 5959–5977, 2019
https://doi.org/10.5194/amt-12-5959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 5959–5977, 2019
https://doi.org/10.5194/amt-12-5959-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Nov 2019

Research article | 18 Nov 2019

Studies of the horizontal inhomogeneities in NO2 concentrations above a shipping lane using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements and validation with airborne imaging DOAS measurements

André Seyler et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by André Seyler on behalf of the Authors (06 Aug 2019)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (14 Aug 2019) by Michel Van Roozendael
RR by Anonymous Referee #2 (16 Aug 2019)
ED: Publish as is (26 Aug 2019) by Michel Van Roozendael
Publications Copernicus
Download
Short summary
This study describes a novel application of an onion-peeling approach to MAX-DOAS measurements of shipping emissions to study the inhomogeneous NO2 field above a shipping lane. It is shown how the method can be used to derive the approximate plume positions in the observed area, and, by using a simple Gaussian plume model, to calculate in-plume NO2 volume mixing ratios. For validation, a comparison to airborne imaging DOAS measurements during the NOSE campaign in July 2013 is included.
This study describes a novel application of an onion-peeling approach to MAX-DOAS measurements...
Citation