Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 607–618, 2019
https://doi.org/10.5194/amt-12-607-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 607–618, 2019
https://doi.org/10.5194/amt-12-607-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Jan 2019

Research article | 30 Jan 2019

Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes

Sung-Kyun Shin et al.
Related authors  
Aerosol-type classification based on AERONET version 3 inversion products
Sung-Kyun Shin, Matthias Tesche, Youngmin Noh, and Detlef Müller
Atmos. Meas. Tech., 12, 3789–3803, https://doi.org/10.5194/amt-12-3789-2019,https://doi.org/10.5194/amt-12-3789-2019, 2019
Short summary
On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product
Sung-Kyun Shin, Matthias Tesche, Kwanchul Kim, Maria Kezoudi, Boyan Tatarov, Detlef Müller, and Youngmin Noh
Atmos. Chem. Phys., 18, 12735–12746, https://doi.org/10.5194/acp-18-12735-2018,https://doi.org/10.5194/acp-18-12735-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Aerosol direct radiative effect over clouds from a synergy of Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances
Martin de Graaf, L. Gijsbert Tilstra, and Piet Stammes
Atmos. Meas. Tech., 12, 5119–5135, https://doi.org/10.5194/amt-12-5119-2019,https://doi.org/10.5194/amt-12-5119-2019, 2019
Short summary
A Tale of Two Dust Storms: analysis of a complex dust event in the Middle East
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019,https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019,https://doi.org/10.5194/amt-12-4849-2019, 2019
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller
Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019,https://doi.org/10.5194/amt-12-4421-2019, 2019
Short summary
Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: impact of wavelength choice
Gregori de Arruda Moreira, Fábio Juliano da Silva Lopes, Juan Luis Guerrero-Rascado, Jonatan João da Silva, Antonio Arleques Gomes, Eduardo Landulfo, and Lucas Alados-Arboledas
Atmos. Meas. Tech., 12, 4261–4276, https://doi.org/10.5194/amt-12-4261-2019,https://doi.org/10.5194/amt-12-4261-2019, 2019
Short summary
Cited articles  
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131—3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Ångström, A.: The parameters of atmospheric turbidity, Tellus, 16, 64–75, https://doi.org/10.1111/j.2153-3490.1964.tb00144.x, 1964. a
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. a, b, c
Bergstrom, R. W.: Extinction and absorption coefficients of the atmospheric aerosol as a function of particle size, Contributions to Atmospheric Physics, 46, 223–234, 1973. a
Bohren, C. F. and Huffman, D. R.: Absorbing and scattering of light by small particles, Wiley, Weinheim, https://doi.org/10.1002/9783527618156, 1983. a
Publications Copernicus
Download
Short summary
We present a methodology to infer the contribution of mineral dust and non-dust aerosol to the absorbing aerosol optical depth (AAOD) of mixed aerosol layers. The method presents an adaptation of a lidar-based aerosol-type separation technique to passive measurements with AERONET sun photometers by using lidar-specific parameters obtained from the AERONET inversion. The findings on BC-related AAOD are compared to CAMS aerosol reanalysis data with promising results for sites in east Asia.
We present a methodology to infer the contribution of mineral dust and non-dust aerosol to the...
Citation