Simulation of particle spectra and the creation of the lookup table

Collect a set of i_L, n_L, and p_L by iterating through all realistic combinations of i, assuming a gamma size distribution.

Input:

$$i_L = (\text{particle type, } p, T, \sigma_{\text{total}}, D_m, \mu)$$

Normals:

$$n_L = (N_1, F_1, Z_1, E_1)_L$$

Size/shape properties:

$$p_L = (v_t, w, Z/E)_L$$

(a)

Look up a result

Create space with a combination of the coordinates (here: v_t and w) and fill with the corresponding vectors n_L and i_L.

Calculate the distribution of the matching probability in (v_t, w) space against vector $m=(v_{t,M}, w_M)$ measured with errors.

(b)

Scale normal vectors and combine with P

Retrieve vectors r_L of extensive properties by scaling each normal vector of the lookup table with measured Z_M and the simulated Z_1 so that $r_L = n_L (Z_M / Z_1)$.

Plot an element of all vectors r_L vs matching probability P (example for number concentration).

(c)