Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2299-2020
https://doi.org/10.5194/amt-13-2299-2020
Research article
 | 
13 May 2020
Research article |  | 13 May 2020

Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry

Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023,https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022,https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Evaluation of the New York State Mesonet Profiler Network data
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022,https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Quantification of motion-induced measurement error on floating lidar systems
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022,https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-234,https://doi.org/10.5194/amt-2022-234, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Amato, U. and Hughes, W.: Maximum entropy regularization of Fredholm integral equations of the first kind, Inverse Probl., 7, 793–808, 1991. 
Armstrong, R. L.: Line mixing in the ν2 band of CO2, Appl. Optics, 21, 2141–2145, https://doi.org/10.1364/AO.21.002141, 1982. 
Boone, C. D., Walker, K. A., and Bernath, P. F.: An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications, J. Quant. Spectrosc. Ra., 112, 980–989, https://doi.org/10.1016/j.jqsrt.2010.11.013, 2011. 
Bruneau, D., Pelon, J., Blouzon, F., Spatazza, J., Genau, P., Buchholtz, G., Amarouche, N., Abchiche, A., and Aouji, O.: 355-nm high spectral resolution airborne lidar LNG: system description and first results, Appl. Optics, 54, 8776–8785, https://doi.org/10.1364/AO.54.008776, 2015. 
Bulanin, M. O., Dokuchaev, A. B., Tonkov, M. V., and Filippov, N. N.: Influence of line interference on the vibration-rotation band shapes, J. Quant. Spectrosc. Ra., 31, 521–543, https://doi.org/10.1016/0022-4073(84)90059-1, 1984. 
Download
Short summary
The paper presents a new technique in remote wind measurements that may potentially complement conventional aerological observations and eventually greatly improve our knowledge about our climate system, especially concerning processes related to troposphere–stratosphere coupling. The technique may be implemented at relatively low cost in various applications from meteorological observation posts to remote sensing spacecraft.