Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-969-2020
https://doi.org/10.5194/amt-13-969-2020
Research article
 | 
02 Mar 2020
Research article |  | 02 Mar 2020

Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar

Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev

Related authors

Inter-comparison of Eddy-Covariance Software for Urban Tall Tower Sites
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
EGUsphere, https://doi.org/10.5194/egusphere-2024-35,https://doi.org/10.5194/egusphere-2024-35, 2024
Short summary
Coupled large eddy simulations of land surface heterogeneity effects and diurnal evolution of late summer and early autumn atmospheric boundary layers during the CHEESEHEAD19 field campaign
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721,https://doi.org/10.5194/egusphere-2023-1721, 2023
Short summary
Interpretability of negative latent heat fluxes from Eddy Covariance measurements during dry conditions
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek S. El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2556,https://doi.org/10.5194/egusphere-2023-2556, 2023
Short summary
Verifying triple and single Doppler lidar wind measurements with sonic anemometer data based on a new filter strategy for virtual tower measurements
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Paeschke, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1704,https://doi.org/10.5194/egusphere-2023-1704, 2023
Short summary
Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021,https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024,https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024,https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024,https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Evaluation of in situ observations on Marine Weather Observer during Typhoon Sinlaku
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024,https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023,https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary

Cited articles

Aubinet, M., Vesala, T., and Papale, D. (eds.): Eddy Covariance – A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, 2012. 
Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009. 
Bradley, S.: Wind speed errors for LIDARs and SODARs in complex terrain, IOP Conf. Ser. Earth Environ. Sci., 1, 012061, https://doi.org/10.1088/1755-1307/1/1/012061, 2008. 
Brugger, P., Träumner, K., and Jung, C.: Evaluation of a procedure to correct spatial averaging in turbulence statistics from a doppler lidar by comparing time series with an ultrasonic anemometer, J. Atmos. Ocean. Technol., 33, 2135–2144, https://doi.org/10.1175/JTECH-D-15-0136.1, 2016. 
Download
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.