Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 3, issue 2 | Copyright
Atmos. Meas. Tech., 3, 339-354, 2010
https://doi.org/10.5194/amt-3-339-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  10 Mar 2010

10 Mar 2010

Tomographic retrieval approach for mesoscale gravity wave observations by the PREMIER Infrared Limb-Sounder

J. Ungermann, L. Hoffmann, P. Preusse, M. Kaufmann, and M. Riese J. Ungermann et al.
  • Forschungszentrum Jülich, Institut für Chemie und Dynamik der Geosphäre (ICG-1), Jülich, Germany

Abstract. PREMIER is one of three candidates for ESA's 7th Earth Explorer mission that are currently undergoing feasibility studies. The main mission objective of PREMIER is to quantify processes controlling atmospheric composition in the mid/upper troposphere and lower stratosphere, a region of particular importance for climate change. To achieve this objective, PREMIER will employ the first satellite Fourier transform infrared limb-imager with a 2-D detector array combined with a millimetre-wave limb-sounder. The infrared limb-imager can be operated in a high spatial resolution mode ("dynamics mode") for observations of small-scale structures in atmospheric temperatures and trace gas fields with unprecedented 3-D sampling (0.5 km in the vertical direction, 50 km along track, 25 km across track). In this paper, a fast tomographic retrieval scheme is presented, which is designed to fully exploit the high-resolution radiance observations of the dynamics mode. Based on a detailed analysis of the "observational filter", we show that the dynamics mode provides unique information on global distributions of gravity waves (GW). The achievable vertical resolution for GW observations has values between the vertical sampling (0.5 km) of the dynamics mode and the vertical field of view (about 0.75 km). The horizontal across track resolution corresponds to the horizontal across track sampling of 25 km. Since the achievable along track horizontal resolution is about 70 km, the dynamics mode will provide GW limb-observations with a horizontal resolution comparable to nadir sounders. Compared to previous observations, PREMIER will therefore considerably extend the range of detectable GWs in terms of horizontal and vertical wavelength.

Publications Copernicus
Download
Citation
Share