Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 4, issue 7
Atmos. Meas. Tech., 4, 1471–1479, 2011
https://doi.org/10.5194/amt-4-1471-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 4, 1471–1479, 2011
https://doi.org/10.5194/amt-4-1471-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Jul 2011

Research article | 20 Jul 2011

A field-deployable, chemical ionization time-of-flight mass spectrometer

T. H. Bertram et al.

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Long-term reliability of the Figaro TGS 2600 solid-state methane sensor under low-Arctic conditions at Toolik Lake, Alaska
Werner Eugster, James Laundre, Jon Eugster, and George W. Kling
Atmos. Meas. Tech., 13, 2681–2695, https://doi.org/10.5194/amt-13-2681-2020,https://doi.org/10.5194/amt-13-2681-2020, 2020
Short summary
Airborne measurement of peroxy radicals using chemical amplification coupled with cavity ring-down spectroscopy: the PeRCEAS instrument
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, and John Philip Burrows
Atmos. Meas. Tech., 13, 2577–2600, https://doi.org/10.5194/amt-13-2577-2020,https://doi.org/10.5194/amt-13-2577-2020, 2020
Short summary
A low-activity ion source for measurement of atmospheric gases by chemical ionization mass spectrometry
Young Ro Lee, Yi Ji, David J. Tanner, and L. Gregory Huey
Atmos. Meas. Tech., 13, 2473–2480, https://doi.org/10.5194/amt-13-2473-2020,https://doi.org/10.5194/amt-13-2473-2020, 2020
Short summary
Single-photon laser-induced fluorescence detection of nitric oxide at sub-parts-per-trillion mixing ratios
Andrew W. Rollins, Pamela S. Rickly, Ru-Shan Gao, Thomas B. Ryerson, Steven S. Brown, Jeff Peischl, and Ilann Bourgeois
Atmos. Meas. Tech., 13, 2425–2439, https://doi.org/10.5194/amt-13-2425-2020,https://doi.org/10.5194/amt-13-2425-2020, 2020
Short summary
Eddy covariance flux measurements of gaseous elemental mercury over a grassland
Stefan Osterwalder, Werner Eugster, Iris Feigenwinter, and Martin Jiskra
Atmos. Meas. Tech., 13, 2057–2074, https://doi.org/10.5194/amt-13-2057-2020,https://doi.org/10.5194/amt-13-2057-2020, 2020
Short summary

Cited articles

Berresheim, H., Elste, T., Plass-Dulmer, C., Eisele, F. L., and Tanner, D. J.: Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4, Int. J. Mass Spectrom., 202(1–3), 91–109, 2000.
Blake, R. S., Whyte, C., Hughes, C. O., Ellis, A. M., and Monks, P. S.: Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds, Anal. Chem., 76(13), 3841-3845, 2004.
Blake, R. S., Wyche, K. P., Ellis, A. M., and Monks, P. S.: Chemical ionization reaction time-of-flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition, Int. J. Mass Spectrom., 254(1–2), 85–93, 2006.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78(24), 8281–8289, 2006.
Ennis, C. J., Reynolds, J. C., Keely, B. J., and Carpenter, L. J.: A hollow cathode proton transfer reaction time of flight mass spectrometer, Int. J. Mass Spectrom., 247(1–3), 72-80, 2005.
Publications Copernicus
Download
Citation