Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 4, issue 10
Atmos. Meas. Tech., 4, 2225–2234, 2011
https://doi.org/10.5194/amt-4-2225-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 4, 2225–2234, 2011
https://doi.org/10.5194/amt-4-2225-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Oct 2011

Research article | 19 Oct 2011

3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography

F. Enzmann1, M. M. Miedaner1, M. Kersten1, N. von Blohn1, K. Diehl1, S. Borrmann1, M. Stampanoni2, M. Ammann2, and T. Huthwelker2 F. Enzmann et al.
  • 1Earth System Science Research Centre, Johannes Gutenberg-University, Mainz, Germany
  • 2Paul Scherrer Institut, Villigen-PSI, Villigen, Switzerland

Abstract. The air bubble structure is an important parameter to determine the radiation properties of graupel and hailstones. For 3-D imaging of this structure at micron resolution, a cryo-stage was developed. This stage was used at the tomography beamline of the Swiss Light Source (SLS) synchrotron facility. The cryo-stage setup provides for the first time 3-D-data on the individual pore morphology of ice particles down to infrared wavelength resolution. In the present study, both sub-mm size natural and artificial ice particles rimed in a wind tunnel were investigated. In the natural rimed ice particles, Y-shaped air-filled closed pores were found. When kept for half an hour at −8 °C, this morphology transformed into smaller and more rounded voids well known from literature. Therefore, these round structures seem to represent an artificial rather than in situ pore structure, in contrast to the observed y-shaped structures found in the natural ice particles. Hence, for morphological studies on natural ice samples, special care must be taken to minimize any thermal cycling between sampling and measurement, with least artifact production at liquid nitrogen temperatures.

Publications Copernicus
Download
Citation