Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 4, issue 12
Atmos. Meas. Tech., 4, 2749–2765, 2011
https://doi.org/10.5194/amt-4-2749-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 4, 2749–2765, 2011
https://doi.org/10.5194/amt-4-2749-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Dec 2011

Research article | 15 Dec 2011

Ground-based retrieval of continental and marine warm cloud microphysics

G. Martucci and C. D. O'Dowd G. Martucci and C. D. O'Dowd
  • School of Physics & Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland

Abstract. A technique for retrieving warm cloud microphysics using synergistic ground based remote sensing instruments is presented. The SYRSOC (SYnergistic Remote Sensing Of Cloud) technique utilises a Ka-band Doppler cloud RADAR, a LIDAR (or ceilometer) and a multichannel microwave radiometer. SYRSOC retrieves the main microphysical parameters such as cloud droplet number concentration (CDNC), droplets effective radius (reff), cloud liquid water content (LWC), and the departure from adiabatic conditions within the cloud. Two retrievals are presented for continental and marine stratocumulus advected over the Mace Head Atmospheric Research Station. Whilst the continental case exhibited high CDCN (N = 382 cm−3; 10th-to-90th percentile [9.4–842.4] cm−3) and small mean effective radius (reff = 4.3; 10th-to-90th percentile [2.9–6.5] μm), the marine case showed low CDNC and large mean effective radius (N = 25 cm−3, 10th-to-90th percentile [1.5–69] cm−3; reff = 28.4 μm, 10th-to-90th percentile [11.2–42.7] μm) as expected since continental air at this location is typically more polluted than marine air. The mean LWC was comparable for the two cases (continental: 0.19 g m−3; marine: 0.16 g m−3) but the 10th–90th percentile range was wider in marine air (continental: 0.11–0.22 g m−3; marine: 0.01–0.38 g m−3). The calculated algorithm uncertainty for the continental and marine case for each variable was, respectively, σN = 161.58 cm−3 and 12.2 cm−3, σreff = 0.86 μm and 5.6 μm, σLWC = 0.03 g m−3 and 0.04 g m−3. The retrieved CDNC are compared to the cloud condensation nuclei concentrations and the best agreement is achieved for a supersaturation of 0.1% in the continental case and between 0.1%–0.75% for the marine stratocumulus. The retrieved reff at the top of the clouds are compared to the MODIS satellite reff: 7 μm (MODIS) vs. 6.2 μm (SYRSOC) and 16.3 μm (MODIS) vs. 17 μm (SYRSOC) for continental and marine cases, respectively. The combined analysis of the CDNC and the reff, for the marine case shows that the drizzle modifies the droplet size distribution and reff especially if compared to reffMOD. The study of the cloud subadiabaticity and the LWC shows the general sub-adiabatic character of both clouds with more pronounced departure from adiabatic conditions in the continental case than in the marine.

Publications Copernicus
Download
Citation