Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 5, issue 8 | Copyright
Atmos. Meas. Tech., 5, 1911-1923, 2012
https://doi.org/10.5194/amt-5-1911-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Aug 2012

Research article | 10 Aug 2012

Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

C. L. Faiola, M. H. Erickson, V. L. Fricaud, B. T. Jobson, and T. M. VanReken C. L. Faiola et al.
  • Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, USA

Abstract. Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20–55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from −24% to −2%. The difference between theoretical ECN and measured ECN ranged from −22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.

Publications Copernicus
Download
Citation
Share