Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 5, issue 8 | Copyright
Atmos. Meas. Tech., 5, 1925-1934, 2012
https://doi.org/10.5194/amt-5-1925-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Aug 2012

Research article | 13 Aug 2012

Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies

W. Eugster1 and G. W. Kling2 W. Eugster and G. W. Kling
  • 1ETH Zurich, Institute of Agricultural Sciences, Universitätsstrasse 2, 8092 Zurich, Switzerland
  • 2University of Michigan, Department of Ecology & Evolutionary Biology, Ann Arbor, MI 48109-1048, USA

Abstract. Methane is the second most important greenhouse gas after CO2 and contributes to global warming. Its sources are not uniformly distributed across terrestrial and aquatic ecosystems, and most of the methane flux is expected to stem from hotspots which often occupy a very small fraction of the total landscape area. Continuous time-series measurements of CH4 concentrations can help identify and locate these methane hotspots. Newer, low-cost trace gas sensors such as the Figaro TGS 2600 can detect CH4 even at ambient concentrations. Hence, in this paper we tested this sensor under real-world conditions over Toolik Lake, Alaska, to determine its suitability for preliminary studies before placing more expensive and service-intensive equipment at a given locality. A reasonably good agreement with parallel measurements made using a Los Gatos Research FMA 100 methane analyzer was found after removal of the strong sensitivities for temperature and relative humidity. Correcting for this sensitivity increased the absolute accuracy required for in-depth studies, and the reproducibility between two TGS 2600 sensors run in parallel is very good. We conclude that the relative CH4 concentrations derived from such sensors are sufficient for preliminary investigations in the search of potential methane hotspots.

Publications Copernicus
Download
Citation
Share