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S1  Literature Review: 2-dimensional factorization of datasets that include size-distribution 21 

data 22 

In this section, we discuss and summarize research that reports the application of mathematical 23 

techniques to datasets that include particle size information.  We first present an overview of the 24 

mathematical techniques used in studies of 2-dimensional (2D) datasets.  Then we summarize the 25 

arrangement of datasets containing particle size information into 2D matrices.  The datasets 26 

include particle size information in one of two ways: (1) the dataset contains aerosol size 27 

distributions, and may also include simultaneous measurements of gas-phase and/or bulk 28 

aerosol-phase chemical constituents; or (2) the dataset contains size-resolved aerosol chemical 29 

composition, and the factors obtained from analysis of different size ranges were compared.  30 

Finally, we summarize the studies in the literature that have applied factorization methods to 31 

these datasets. 32 

S1.1  Mathematical techniques for 2-dimensional factor analysis 33 

Various mathematical techniques have been applied to datasets that include size distribution or 34 

size-resolved aerosol composition information. Collectively, the goal of these techniques is the 35 

same: to determine particle sources.  Several terms have been used in the literature to describe 36 

these related techniques, including factor analysis, source apportionment, and matrix 37 

factorization.  Each of these terms has a different technical definition and common usage.  38 

Although “factor analysis” technically refers to multivariate analyses that produce orthogonal 39 

factors (Malinowski, 1991), it is commonly used to refer to a variety of multivariate analyses, 40 

regardless of the orthogonality of the factors.  In this work, we accept the common usage and 41 

refer to the class of multivariate analyses that have been applied the datasets of interest as “factor 42 

analysis.” 43 

We now discuss how the 2D factorization model represents aerosol processes.  A 2D matrix is 44 

deconvolved such that each factor is composed of two one-dimensional (1-D) vectors (i.e., a 45 

bilinear unmixing model).  Several examples of this scheme are shown in Fig. S10.  One factor 46 

vector describes how much of that factor is present in each sample and is called a time series.  47 

The other vector describes the composition of the aerosol in that factor and is called a profile.  A 48 
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factor’s profile shows the fractional contribution of the constituents contained in the rows of the 49 

input matrix.  For example, in the matrix shown in Fig. S10a, each matrix row contains the 50 

concentrations of particles at a given size, and each factor profile also contains a size 51 

distribution.  In contrast, the matrix rows in Fig. S10b contain concentrations of particles at given 52 

sizes and simultaneously measured concentrations of gas-phase species.  The factor profiles from 53 

this matrix thus contain a size distribution and relative concentrations of the gas-phase species. 54 

The data matrix is reconstructed by the linear combination of some number of factors, and each 55 

measured sample (matrix rows) can have contributions from more than one factor.  This 56 

reconstruction is described by 57 

௜௝ݔ													 ൌ 	∑ ܽ௜௣ܿ௣௝௣ ൅ ݁௜௝																																																																																				ሺS1ሻ  58 

where i and j are the row and column indices for the matrix, respectively; p is the number of 59 

factors; xij is an element of the m ൈ n data matrix X to be factored; aip is an element of the m ൈ  p 60 

matrix A, the columns of which contain the factor time series; cpj is an element of the p ൈ  n 61 

matrix C, the rows of which contain the factor profiles; and eij is an element of the m ൈ  n matrix 62 

E of the residuals of the solution, i.e., the difference between the measured data and the 63 

reconstruction.   64 

Several factor analytical methods are available to solve the bilinear unmixing model described in 65 

Eq. (S1).  The methods differ by the requirements of a priori knowledge about the factor profiles 66 

and constraints placed on the factor profiles and time series.   In principal component analysis 67 

(PCA, Malinowski, 1991) and absolute principal component analysis (APCA, Thurston and 68 

Spengler, 1985), no a priori knowledge about the profiles is required.  In these methods, the 69 

factor profiles are orthogonal to each other, and the factor time series are also orthogonal to each 70 

other.  The orthogonality requirement creates factor profiles and time series with both positive 71 

and negative values.  Similarly, Positive Matrix Factorization (PMF, Paatero, 1997) does not 72 

require a priori knowledge about the profiles.  However, orthogonal factors are not possible in 73 

PMF2 as the elements of the factor profiles and time series are constrained to be positive.  The 74 

positivity requirement means that all profiles will have positive signals, and the time series will 75 

have positive mass.  Consequently, PMF factors are usually more physically meaningful than 76 
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those from PCA.  In contrast to these two methods, the factor profiles are completely prescribed 77 

in the Chemical Mass Balance approach (CMB, Friedlander, 1973), and no constraints are placed 78 

on the factor time series. 79 

Instead of using factor analytical methods, samples can be grouped into clusters based on sample 80 

similarity.  Cluster analysis groups measurements with similar characteristics, and these clusters 81 

can be associated with sources of measured aerosol (Murphy et al., 2003; Dillner et al., 2005; 82 

Marcolli et al., 2006; Beddows et al., 2009).  The clusters can also be represented with two 1-D 83 

vectors: the cluster profile is the average composition of the samples in the cluster, and the time 84 

series is the number of samples in the cluster over average sampling periods.  In most cluster 85 

analyses, an entire sample vector is assigned to a group, and therefore each total measurement 86 

can be assigned to only one cluster.  A notable exception is fuzzy cluster analysis, in which 87 

sample vectors can be assigned to multiple clusters with an associated degree of membership to 88 

each group (Bezdek et al., 1981).   89 

These mathematical techniques have been applied to 2D datasets that include particle size 90 

information.  We now summarize these types of studies in order of increasing complexity of the 91 

data in the factorization matrix. 92 

S1.2  Arrangements of datasets including particle size information for factor analysis 93 

The datasets that include size distributions and whose factorization has been reported in the 94 

literature can be divided into two broad categories.  In the first category, samples include one set 95 

of measurements at each time.  These measurements may include any of the following: particle 96 

size distributions, particle-phase bulk chemical composition, or gas-phase chemical composition.  97 

The measurements are arranged as 2D matrix in which one dimension contains the measured 98 

data for each time step and the other dimension is time.  This category of datasets contains four 99 

subcategories, depending on the type of measured data (Fig. S10a–d).  All four subcategories 100 

include particle size distributions, i.e., the number or volume concentration of particles at 101 

multiple particle sizes. One subcategory uses only size distributions in the input matrix (Fig. 102 

S10a), while the other subcategories couple size distributions and different combinations of gas-103 

phase composition and bulk aerosol chemical composition data (Fig. S10b–d).   104 
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In the second category, samples include two dependent measurements at each time: particle size, 105 

and the particles’ chemical composition at each size, i.e., size-resolved composition data.  The 106 

size-resolved composition data can be arranged in two forms for factorization (Fig. S10e–f).  In 107 

the first arrangement, the chemical composition data from each particle size form a separate 2D 108 

matrix, and each 2D matrix is factored independently of the others (Fig. S10e).  In this 109 

arrangement, a single source may contribute to different size ranges, but is not required to have 110 

the same chemical composition at every size.  In contrast, the size-resolved composition data can 111 

be arranged such that the measured concentrations from different particles are appended as rows 112 

of a single 2D matrix (Fig. S10f).  In this arrangement, the chemical composition of each factor 113 

must be the same for all particle sizes. 114 

S1.3  Research reporting 2-dimensional factorizations using particle-size information 115 

Research that has reported 2D factor analysis of aerosol number or mass size distributions, or 116 

datasets of size-resolved, aerosol chemical composition are summarized briefly in Table S1 and 117 

in greater detail in Tables S2–S7.  Schematics of the factorization of six dataset types are shown 118 

in Fig. S10.  Each of the six categories is discussed below. 119 

The first category of studies applies factor analysis techniques to datasets of aerosol number 120 

distributions or combined aerosol number and mass distributions (Fig. S10a, Table S2).  A good 121 

example from this category is the study by Costabile et al. (2009), who used PCA to analyze 122 

aerosol number distributions collected over two years from eight locations in and near Leipzig, 123 

Germany.  The authors analyzed the data in two ways: (1) They factored the measurements from 124 

each site separately and (2) they factored combined measurements from selected subsets of the 125 

locations.  Combining measurements from different locations allowed the authors to assess the 126 

temporal and spatial variation in the number size distribution.  The authors identify factors in the 127 

nucleation mode, Aitken mode, and accumulation mode size ranges.  The factors have names 128 

such as “fresh, roadside,” “fresh, background,”, “rural”, “urban traffic”, and “continental.”  The 129 

authors assigned some of their factors to sources, but noted that some aerosol modes have 130 

contributions from multiple sources, e.g., long-range-transported and primary urban aerosol.  131 

Another study in this category acknowledges that particle size distribution components may not 132 

be directly related to particle sources (Chan and Mozurkewich, 2007a), and so they combine 133 
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simplified representations of size distributions derived by APCA from three rural and urban 134 

locations near Toronto with gas-phase concentrations of CO, NOx, SO2,and Ox (NO2 + O3) and 135 

wind speed to associate the different aerosol modes with photochemical processing, regional 136 

pollution, boundary layer dynamics, local anthropogenic emissions, and processed nucleated 137 

particles (Chan and Mozurkewich, 2007b).   However, most of the other studies in this category 138 

assign factors to sources such as stationary combustion sources, local traffic, spark-ignition 139 

gasoline emissions, and secondary aerosol, but only rarely note that such assignments can only 140 

be tentative without aerosol composition data (Kim et al., 2004).  In addition to identifying 141 

aerosol modes, Costabile et al. (2009) presented a paradigm for transformation of the aerosol size 142 

distribution from the local to the regional scale, showing that aerosol near sources has high 143 

temporal and spatial variability, but that the size distributions become similar in both space and 144 

time as aerosol is aged and transported regionally.   145 

The second category of studies pairs aerosol number distributions with the concentrations of 146 

simultaneously measured gas-phase species (Fig. S10b, Table S3).  In one such study, 147 

Thimmaiah et al. (2009) propose the factorization of size distribution and gas-phase data as a 148 

cost-effective method for informing air-quality management programs.  However, only four 149 

factors are identified in this PMF study (ozone-rich, transported ozone/ozone precursors; NOx-150 

rich diesel emissions; traffic-spark ignition vehicles; and local heating sources), and these factors 151 

are weakly supported by correlations between the factor time series and the time series of the 152 

species included in the factorization.  Because the gas-phase species are important contributors to 153 

the factors themselves, it is not surprising that the correlations are high. For example, a factor 154 

attributed to transported ozone and ozone precursors has a strong correlation with ozone 155 

concentrations, and only this factor has an appreciable contribution from ozone.  Stronger 156 

support for factor identification requires correlations with tracers external to the factor analysis 157 

(Zhang et al., 2005a; Lanz et al., 2007).  The Thimmaiah et al. study does not convincingly hold 158 

up its claim for producing useful information.  In the only other published study in this category, 159 

Wahlin et al. (2001) measured aerosol number distributions, CO, and NOx at roadside-sampling 160 

locations, and applied PCA to these data with the goal of separating diesel and gasoline 161 

contributions to ultrafine particles.  The diesel and gasoline contributions could not be 162 

completely separated, and one factor was attributed to diesel vehicles, while another was 163 
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attributed to both gasoline and diesel vehicles.  The authors concluded that more reliable 164 

separation of the gasoline and diesel contributions requires a specific tracer for diesel emissions; 165 

furthermore, they noted that better understanding of particle sources and transformation could 166 

come from combining particle size distributions and particle composition data. 167 

The third category of studies pairs aerosol number distributions with chemically speciated 168 

measurements of the bulk aerosol (Fig. S10c, Table S4).  Such datasets must be constructed 169 

carefully with respect to the particle size distribution used in the analysis.  The aerosol number 170 

distribution is dominated by very small particles, but the aerosol chemical composition comes 171 

mainly from the large particles that contribute most of the particle mass (Seinfeld and Pandis, 172 

1998).  However, the particle mass and volume distributions usually agree well, and so including 173 

these together should be satisfactory for factor analysis.  To address the discrepancy and 174 

differences in the uncertainties between the number size distribution and composition data, 175 

Larson et al. (2006) decreased the weight of the size information by a factor of 10 in the 176 

factorization of measured particle number distributions, volume distributions, and chemically 177 

resolved species from PM2.5 (particulate matter with diameter ≤ 2.5 µm).  In this study, the 178 

degree of weighting of the size information had only a minor effect on the factors’ size 179 

distributions and average mass contribution, but the effect on the factors’ chemical composition 180 

was not described.  Factors identified in this study include vegetative burning, aged sea salt, and 181 

metals processing.   182 

The final category of datasets that include non-chemically resolved size-distribution data 183 

combines them with both gas-phase and bulk particle composition data (Fig. S10d, Table S5).  184 

Like the research that combined particle size distribution and chemical composition data, in these 185 

studies the input aerosol size distributions usually encompassed a smaller size range than the 186 

bulk composition data.  For example, Zhou et al. (2005a) applied PMF to a dataset that combined 187 

aerosol number distributions, concentrations of particulate nitrate, sulfate, and 11 trace metals, 188 

and concentrations of five gas-phase species.  Factor names were assigned based mainly on the 189 

chemical composition of the factors, which included two secondary nitrate factors, coal-fired 190 

power plant, steel mill, and nucleation.  In this study, sulfate (and to a lesser degree, nitrate) had 191 

substantial contributions to the aerosol composition of all factors.  Although each factor included 192 

a size distribution, little information was given about how well the overall size distributions were 193 
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fit, and it was unclear how strongly the size distribution information influenced the factorization 194 

results. 195 

We have now reviewed the studies that include particle size distributions in the factorization 196 

matrix.  In general, the particle size information may have been too strongly linked to sources 197 

when little or no particle chemical composition was included, or undervalued when the analysis 198 

relied predominantly on bulk composition data for source identification.  We now consider 199 

studies that use size-resolved aerosol composition datasets to explore the sources of ambient 200 

aerosol. 201 

The remaining 2D factorization studies explore such size-resolved chemical composition 202 

datasets.  In most of these studies, factor analysis is performed separately on the chemical 203 

species measured for each size range (Fig. S10e, Table S6).  The studies that factor the 204 

composition from each size range separately fall into two main groups based on the size 205 

resolution of the data: (1) studies that use species from overlapping bulk PM sizes (e.g., PM2.5, 206 

PM10) and (2) those that use multistage samplers to separate particles by size.  Two studies of the 207 

latter type are reviewed here.  Kleeman et al. (2009) measured 8 molecular organic tracers from 208 

six stages of a MOUDI sampler (0.055–1.8 µm) at urban locations in California.  This study used 209 

a custom source-apportionment algorithm to relate tracers for five sources (wood burning, meat 210 

cooking, motor oil, gasoline, and diesel fuel) to measured elemental and organic carbon 211 

concentrations.  The dominant sources of elemental carbon were found to be gasoline and diesel 212 

vehicle exhaust.  Little organic carbon mass was attributed to vehicle exhaust.  The dominant 213 

sources of organic carbon were found to be wood burning and meat cooking.   Organic carbon 214 

that could not be assigned to the selected sources was 10–24% of the PM1.8 mass and 0–58% of 215 

the PM0.1 mass and may come from oil and gas refining in the region or from SOA.  In another 216 

study, Han et al. (2006) analyzed a dataset of 19 elements measured from an 8-stage DRUM 217 

sampler (0.07 to ~12 µm) collected at Gosan, Korea, in 2002.  PMF was applied separately to the 218 

chemical composition data from each stage, i.e., particle size range.  The authors identified 219 

fifteen sources in total, with four to eight sources contributing to any single size range.  The 220 

chemical profiles identified for the same source in different size ranges were shown to have high 221 

similarity, and most sources had a strong size dependence.  For example, local soil and sea salt 222 
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were present mainly in coarse sizes, while coal combustion particles and diesel vehicle particles 223 

were identified in only the fine and ultrafine sizes, respectively.     224 

The final type of 2D factorization is based on the assumption that particles from a single source 225 

have the same composition across a broad size range.  Instead of factoring size-resolved 226 

composition data separately for each particle size range, Amato et al. (2009) combined speciated 227 

chemical measurements from different overlapping size ranges (PM10, PM2.5, and PM1) into one 228 

factorization matrix (Fig. S10f, Table S7).  This dataset could not be factored using a 3-229 

dimensional (3D) model because the measurements from different sizes were not collected 230 

simultaneously.  Instead, the authors arranged their input matrix such that species from each size 231 

were appended as rows of the matrix.  In this matrix arrangement, the time series of each factor 232 

includes the contribution of that factor at each size, and each factor must have the same chemical 233 

profile for all sizes.  The assumption that the factors have the same chemical profile for all sizes 234 

was not tested directly because the data from each size were not factored separately.  However, 235 

the contributions of the sources to each particle size matched previous knowledge about these 236 

sources.  For example, aged sea salt was found with high concentrations in PM10, lower 237 

concentrations in PM2.5, and negligible mass contributions to PM1.  In contrast, vehicle exhaust 238 

had the comparable contributions to all three size ranges. 239 

In summary, multiple 2D factorization approaches have been applied to aerosol datasets that 240 

include particle size distributions.  These studies attempt to understand the processes influencing 241 

ambient particle size distributions, but at best provide speculative assignments to sources in the 242 

absence of chemical information.  The addition of some chemical information from gas-phase 243 

species gave insight to particle sources only in one carefully constructed study (Costabile et al., 244 

2009).  Combining aerosol size distributions with particle composition data enabled more 245 

complete attempts to characterize the size distribution of aerosol sources.  The 2D factorization 246 

approaches that used size-resolved aerosol composition are the most promising of the 2D cases 247 

for obtaining a size-resolved source apportionment.  However, these studies have coarse time 248 

and size resolution, and are unable to address the dynamic nature of the aerosol size distribution 249 

as it evolves through atmospheric processes.  250 
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S2 Research reporting 3-dimensional factorizations using particle-size information 251 

Three peer-reviewed studies have reported 3D factorization of size-resolved aerosol composition 252 

datasets using the 3-vector model, or the vector-matrix model in which the vector contains the 253 

time series.   The datasets include data from the submicron range to particles with diameters less 254 

than 10 µm (PM10).  Each is briefly discussed here. 255 

Yakovleva et al. (1999) factored a dataset of particulate matter composition for PM10 PM2.5 256 

obtained during a study in Riverside, California in 1991.  The goal of this study was to examine 257 

the relationship between daily activities and personal PM exposure.  Particles were collected 258 

from five size-location combinations: PM10 samples were measured with personal, indoor, and 259 

outdoor monitors; and PM2.5 samples were measured with indoor and outdoor monitors.  The 260 

samples were analyzed for concentrations of 18 elements.  The dataset was factored using the 2D 261 

model (applied separately to each particle size range) and the 3-vector model (Fig. 1a).  The 2D 262 

and 3-vector analyses identified factors with different contributions to the size-location 263 

combinations.  For example, sea salt contributed primarily to outdoor PM10 with small 264 

contributions to outdoor PM2.5, while factors representing motor vehicle emissions and 265 

secondary sulfate were identified in all samples.  In addition, particles generated by personal 266 

activities such as cooking, smoking, and vacuuming were identified in personal and indoor PM10 267 

samples.  The main difference between the factors from the 2D and 3-vector models was the 268 

separation of soil, identified as one factor in the 2D datasets, into three factors in the 3-vector 269 

results.  These three soil factors had identical chemical profiles but different size distributions 270 

and were identified as ambient soil in outdoor PM10 samples, resuspended soil in personal PM10 271 

samples, and indoor soil in personal and indoor PM10 samples.  272 

Karanasiou et al. (2009) collected a dataset of coarse (PM10-2) and fine (PM2) particle samples at 273 

three sites in Athens, Greece, in 2002.  The chemical speciation included 13 elements, black 274 

carbon (BC), and SO4
2-.  The dataset was factored with the 2D model (applied separately to each 275 

particle size range) and the 3-vector model.  Using the 3-vector model enabled identification of 276 

some factors that could not be identified from the 2D factorizations.  The factors identified only 277 

in the 3-vector model include motor vehicle exhaust contributions in the coarse fraction and a 278 

second road dust factor in both fractions.  For some factors, different chemical profiles were 279 
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obtained for the coarse and fine fractions from the 2D and 3D factorizations.  This result differs 280 

from the results of Han et al. (2006), who found that aerosol sources had very similar chemical 281 

profiles across different size ranges (Sect. S1.3 in the Supp. Info.).   282 

Pere-Trepat et al. (2007) report the only study in the literature that used a vector-matrix model to 283 

factor a 3D size-resolved dataset of particle chemical composition.  The dataset for this study 284 

was collected in Detroit, Michigan, on three stages of a DRUM sampler and included particles 285 

with diameters from 0.1–2.5 µm.  The collected particles were analyzed for the concentrations of 286 

27 elements.  In addition, absorbances at four ultraviolet and visible wavelengths were included 287 

in the factorization matrix.  The authors report that they attempted to use the 3-vector model for 288 

this dataset; however, the factor compositions were size dependent, and thus the assumptions of 289 

the trilinear model did not hold.  The authors therefore factored their dataset using the vector-290 

matrix model in which the vector contains the time series (Fig. 1d).  This vector-matrix model 291 

finds the size-resolved chemical composition of a component with one time series, i.e., each 292 

factor represents the ensemble of particles that arrive simultaneously at the monitor, but the 293 

chemical composition of those particles may vary with size, though not with time.  For example, 294 

the factor attributed to industrial metal works has the largest contribution from Fe at all sizes, but 295 

Ca appears only in the large particles and S occurs only in the larger two of the three size bins. 296 

  297 
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S3  m/z’s with organic signal omitted from the present study 298 

The standard fragmentation matrix for organics does not assign organic signal to some m/z’s that 299 

are known to have organic signal but also have interferences from air or inorganic ion signals 300 

(m/z 14, 32, 33, 36, 39, 40, 46, and 47).  This omission removes only a small part of the organic 301 

aerosol mass, about 7% of the total mass (Aiken et al., 2009).  Of the omitted m/z’s, the greatest 302 

contribution to the organic mass comes from m/z’s 39 and 40.  Each of these m/z’s contributes 303 

~2% of the total organic mass of the MS mode data.   304 

In addition to the masses normally omitted by the fragmentation matrix, we also omit m/z’s 12 305 

and 30 from this analysis.  These m/z’s can be examined in the high-resolution MS-mode data 306 

(Aiken et al., 2009) and appear to deviate from the assumptions of the standard fragmentation 307 

matrix.  m/z 12 has contributions from an unidentified ion that can contribute up to 25% of the 308 

signal at this m/z, and we do not know how this unidentified ion might be represented in the size 309 

distribution. At m/z 30, interference from NO+ requires estimation of the the organic signal.  The 310 

organic signal is predicted to come from the 13C isotope of C2H5
+, but is instead mainly from 311 

CH2O+ ions, for which a fragmentation ratio to another peak has not been characterized. 312 

  313 
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S4  Comparison of the PMF3 and ME-2 algorithms for solving the 3-vector model 314 

The 3-vector model can be solved by PMF3 or ME-2, which use different convergence 315 

algorithms to minimize Q.  Both algorithms iteratively minimize Q, and each step in the iteration 316 

tests a possible solution in the “Q space”.  The Q space is a function of the data and error 317 

matrices and the model used to fit the data, but is independent of the algorithm used to explore 318 

that space.  We expect that both algorithms have landed in the same local minimum when they 319 

find solutions with the same factors and similar Q values.   320 

ME-2 minimizes Q using the conjugate gradient algorithm (Paatero, 1999), which stops after 321 

encountering a sharp change in the Q gradient.  Such a change marks the transition from a “wall” 322 

to the “floor” of a local minimum in the Q space.  In contrast, PMF3 uses the Gauss-Newton 323 

algorithm (Paatero, 1999), which seeks the lowest point in the local minimum in the Q space.  324 

Logically, the lowest point in the minimum could be lower than the edge of the floor.  This result 325 

is observed in solutions of the 3-vector model in this study (Fig. 3b).  These solutions have 326 

downweighted Q/Qexp values with differences similar to those between solutions in the same 327 

family solved by the same algorithm (< 10-4 Q/Qexp units).   However, the unweighted Q/Qexp 328 

values show somewhat larger differences (Fig. 3a).  The difference in the unweighted Q/Qexp 329 

values between the solutions indicates that the fits differ somewhat, and that differences in the 330 

fits occur mainly in the downweighted m/z-size combinations.  In fact, comparing the best four-331 

factor solution from each algorithm shows that the main difference in the fits is at m/z 100, where 332 

the PMF3 solution has a lower Q contribution.  Since m/z 100 has low SNR at all sizes, the 333 

difference between the Q contributions is amplified when the downweighting is removed. 334 

We do not believe that the lower Q/Qexp values from PMF3 for this dataset imply that the PMF3 335 

solution is better, or that PMF3 uses a better algorithm.  Furthermore, the Gauss-Newton method 336 

used by PMF3 is less efficient than the conjugate-gradient algorithm used by ME-2 when solving 337 

large problems (Paatero, 1999).  We observed this difference in the speed of computing solutions 338 

of the 3-vector model with six or more factors (Fig. S11).  Therefore, we suggest using ME-2 to 339 

solve the 3-vector model for its speed advantage, and also when researchers plan to compare to 340 

other models (which cannot be computed by PMF3). 341 
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S5  Choice of solution of the 3-vector model 342 

In this section we explore solutions of the 3-vector model with two or more factors to choose the 343 

best solutions.  Each family of solutions is examined against the criteria outlined in Sect. 3.4.3 to 344 

determine whether the factors are physically meaningful. 345 

S5.1 Solutions of the 3-vector model with two and three factors 346 

The two-factor solution of the 3-vector model has only one family, in which one factor has a 347 

mass spectrum similar to OOA and the other has a mass spectrum that could be identified as 348 

HOA or BBOA.  BBOA is generally differentiated from HOA in unit-mass-resolution data by 349 

BBOA’s higher contributions from characteristic biomass-burning markers at m/z’s 60 and 73.  350 

However, the contribution from these m/z’s in this mass spectrum is higher than in the HR-MS 351 

HOA mass spectrum but considerably lower than in the HR-MS BBOA mass spectrum.  This 352 

factor appears to be a mix of the BBOA and HOA contributions that cannot be separated with 353 

only two factors.  Thus we consider solutions of the 3-vector model with three factors. 354 

The three-factor solutions of the 3-vector model fall into two families.  The family with the 355 

lower Q/Qexp values has HOA, BBOA, and OOA factors.  These factors appear to be physically 356 

meaningful; thus this solution could be acceptable.  However, the solution lacks an LOA factor. 357 

The largest contribution to Q/Qexp for this solution comes from m/z 58, which in the HR-MS 358 

solution was composed almost completely of organic-nitrogen fragments (C3H8N+ and 359 

C2H4NO+).  Though LOA has a small contribution to the total aerosol mass, its chemical 360 

composition is distinctive, and we would expect to find such a factor in the PToF data. 361 

The other 3-vector family with three factors has a Q/Qexp that is 0.7% higher than the first family.  362 

We note that this difference is much larger than the final convergence criterion used to compute 363 

the solutions (0.001% Q/Qexp), suggesting that the families indeed represent different local 364 

minima in the solution space.  We do not know whether this increase in Q/Qexp is meaningful 365 

(i.e., large enough to imply that the solution is bad) because comparisons between families of 366 

solutions have not been discussed in the literature of 3D aerosol factorization.  The closest 367 

literature comparison is the 2D factorization of an AMS dataset by DeCarlo et al. (2010), in 368 

which the Q/Qexp values for 50 seed solutions with four factors had a range of 1.5% above the 369 
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minimum Q/Qexp.  In this case, the family with the best solution included both the lowest and 370 

highest Q/Qexp values.  We might therefore expect a 0.7% increase in Q/Qexp to be acceptable; 371 

however, it is not clear that the properties of 2D and 3D factorizations of different datasets 372 

should be similar.  Therefore we make no judgment in the present case about the meaning of 373 

increases of Q/Qexp. 374 

The factors in the higher Q/Qexp family are identified as OOA, BBOA, and LOA.  The OOA and 375 

BBOA factors have mass spectra, time series, and size distribution that are similar to those of the 376 

lower Q/Qexp family.  The LOA, in contrast, is more difficult to recognize because its mass 377 

spectrum is distorted compared to the HR-MS LOA factor.  The HR-MS LOA mass spectrum 378 

has significant contributions from m/z’s also prominent in the HOA and BBOA spectra.  These 379 

peaks, at m/z 27 and 29, 41 and 43, 55 and 57, etc., form a characteristic “picket fence” pattern  380 

of peaks containing CnH2n-1
+ and CnH2n-1CO+ ions at the lower m/z of each pair and CnH2n+1

+ and 381 

CnH2n+1CO+ ions at the higher m/z of each pair (McLafferty and Turecek, 1993).  However, these 382 

characteristic hydrocarbon peaks are much less prominent in the LOA mass spectrum found in 383 

this study.  The HR-MS spectrum contains another characteristic peak at m/z 91, which is present 384 

in our LOA spectrum at similarly higher abundance relative to the neighboring peaks.  385 

Specifically, the HR-MS spectrum has a 3% contribution from m/z 91, which is ~10 times higher 386 

than the adjacent peaks in the spectrum, while our LOA has a 4.5% contribution from m/z 91, 387 

which is ~12 times higher than the adjacent peaks.  The major difference between the HR-MS 388 

LOA spectrum and ours is at m/z 58.  The nitrogen-containing fragments at m/z 58 contributed 389 

only 1% of the HR-MS LOA spectrum, but m/z 58 contributes 19% of the signal to LOA in this 390 

solution.  The unusual appearance of our LOA spectrum would lead us to reject this factor as not 391 

physically meaningful if we did not know of its existence from the HR-MS solution.  392 

Nevertheless, the existence of the LOA factor in this solution demonstrates that LOA is 393 

identifiable in the PToF dataset, even though the mass spectrum is different than that in the HR-394 

MS factor.   395 

S5.2  Solutions of the 3-vector model with four factors 396 

Since all of the HR-MS factors are found in the three-factor solutions, we expect to find 397 

solutions of the PToF dataset with four or more factors that include all four of the HR-MS 398 
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factors.  Such a solution with four factors is found, but not in the family with the lowest Q/Qexp 399 

value.  The four-factor solutions are discussed in order of increasing Q/Qexp value. 400 

The four-factor solutions can be grouped into three families (Fig. S6).  The family with the 401 

lowest Q/Qexp values has two recognizable factors and two factors that do not appear to have 402 

physically meaningful mass spectra (Fig. S7).  The recognizable factors represent HOA and 403 

BBOA and have mass spectra, size distribution, and time series similar to the three-factor 404 

solution with the lowest Q/Qexp value.  The mass spectra of the other factors each have large 405 

contributions from m/z’s that are not usually so prominent.  One factor has a mass spectrum 406 

dominated by signals at m/z 44 and related peaks, as defined in the fragmentation table (m/z’s 28, 407 

18, 17, and 16).  The fraction of signal contributed by m/z 44 (f44) is proportional to the aerosol 408 

oxygen-to-carbon ratio (O:C), which is also proportional to aerosol age, so high f44 represents 409 

highly oxidized, aged aerosol (Aiken et al., 2008).  This factor might therefore represent OOA, 410 

and in fact has a high correlation with the OOA factor from the three-factor solution (R = 0.86).  411 

But this high-m/z-44 factor contributes only half of the mass of the OOA factor in the three-412 

factor solution.  Curiously, this mass spectrum has f44 = 0.39, and the group of related peaks 413 

contributes 90% of the signal in this mass spectrum.  This spectrum represents aerosol with an 414 

elemental oxygen-to-carbon ratio (O:C) of 1.6 (Aiken et al., 2008) — much higher than O:C 415 

measured in ambient or laboratory aerosol by the AMS (Ng et al., 2010).  O:C can be combined 416 

with the estimated hydrogen-to-carbon ratio (H:C, Ng et al., 2011a) to estimate the average 417 

carbon oxidation state (OSതതതതC) of the aerosol from this factor (Kroll et al., 2011).  This factor has 418 OSതതതതC = +2.0.  However, the OSതതതതC of atmospheric aerosols rarely exceeds +1 because compounds 419 

with higher oxidation states tend to decompose (Kroll et al., 2011).  Thus the factor in this 420 

solution with f44 = 0.39 is not physically meaningful, even though it improves the fit of the 421 

factorization, as evidenced by its appearance in the family of solutions with the lowest Q/Qexp. 422 

The other unrealistic factor in this solution has a mass spectrum that resembles HOA but is 423 

dominated by m/z 43.  Compared to the HR-MS HOA, the mass spectrum of this factor has more 424 

signal at many m/z’s ≤ 45 and less signal at most m/z’s > 45.  Despite our factor’s mass spectral 425 

HOA features, its time series is negatively correlated with that of HOA in the three-factor 426 

solution (R = -0.12).  This factor’s time series is actually correlated with the time series of OOA 427 

in the three-factor solution (R = 0.77) and accounts for 75% of the OOA mass from the three-428 
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factor solution.  Yet, the mass spectrum has no contribution from m/z 44, our most important 429 

marker for OOA.  Thus the evidence for identifying this factor as HOA or OOA is contradictory.  430 

The factors dominated by m/z 43 or 44 likely represent a “splitting” of the OOA factor, i.e., the 431 

OOA factor has been divided into two factors (Ulbrich et al., 2009).   This division can be 432 

demonstrated by summing the time series from the factors dominated by m/z 43 or m/z 44.  The 433 

summed time series has very strong correlation with the time series of OOA in the three-factor 434 

solution (R=0.95) and similar mass contribution.  The factor splitting can further be 435 

demonstrated by using the average mass contribution from these two factors as weights to 436 

calculate the weighted-average mass spectrum from these two factors.  This weighted average 437 

mass spectrum has a strong correlation with the HR-MS OOA mass spectrum (R=0.98).  From 438 

this evidence, we conclude that the factors dominated by m/z 43 or m/z 44 are not individually 439 

physically meaningful, and so we reject this family of solutions.     440 

The next family of four-factor solutions has Q/Qexp only 0.1% higher than the first family, but 441 

these factors are all recognizable aerosol types (Fig. 4).  The four factors can be identified as 442 

OOA, HOA, BBOA, and LOA.  The LOA mass spectrum has even higher fractions of m/z 58 443 

and m/z 91 than in the three-factor solutions; however, these increases actually reflect a 444 

decreased contribution from the characteristic hydrocarbon m/z’s that also contribute to HOA 445 

and BBOA.  The largest contribution to Q/Qexp for this family is from m/z 43, and the remaining 446 

structure in the Q/Qexp time series has only small features that have little correlation with factor 447 

time series or the total mass time series.  All of the factors in this family of solutions are 448 

physically meaningful; thus, this solution could be acceptable.   449 

The next family has Q/Qexp 0.4% higher than the first family.  The four factors in this family can 450 

be recognized from their mass spectra as OOA, HOA, and two factors representing BBOA (Fig. 451 

S8).  The occurrence of two factors with the same aerosol type identification is rare in the 452 

solutions of the 3-vector model (Table 2), so the occurrence of two BBOA factors is intriguing.  453 

These two BBOA factors have very similar mass spectra (R=0.94), but quite different size 454 

distributions.  One factor has a somewhat narrow size distribution with particle dva that ranges 455 

~40 nm to ~400 nm and has a mode at dva ~180 nm.  The other BBOA factor has a broader 456 

distribution with dva that extends to 1150 nm and has a mode at a larger dva near 370 nm.  The 457 

difference in modes might suggest that the factor with the larger mode represents more aged 458 
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BBOA particles.  However, that factor lacks signal at m/z’s 18 and 44, which usually represent 459 

oxidation, while the mass spectrum for the factor with the smaller mode has contributions from 460 

m/z’s 18 and 44 of 3.5%.  Thus the interpretations based on the factor size distribution and mass 461 

spectra are contradictory, and we find that we cannot support this solution.  The presence of two 462 

BBOA factors suggests that the BBOA factor has been split.  Indeed, the sum of their time series 463 

has very high correlation with the time series of the BBOA factor in the previous family 464 

discussed (R=0.98) and has 21% more mass.  In addition, the time series of these two factors are 465 

moderately correlated (R=0.65), a characteristic of split factors observed in previous studies 466 

(Ulbrich et al., 2009).   The split of the BBOA factor is most likely because the 3-vector model is 467 

not able to fit the BBOA size distribution variability, which might be better fit in the vector-468 

matrix model. 469 

Another interesting feature of this solution is the broad size distribution of the HOA factor.  The 470 

HOA factor has a bimodal size distribution that spans the entire diameter range (20 – 1300 nm) 471 

with modes at dva of ~115 nm and ~410 nm (Fig. S8).  The broad size distribution of this HOA 472 

factor is similar to the average size distribution of HOA in Pittsburgh aerosol (estimated as 12.3 473 

* m/z 57 - 0.02 * m/z 44, Zhang et al., 2005a; Zhang et al., 2005b).  However, the size 474 

distribution of the Pittsburgh HOA is flatter, i.e., distinct modes are not easily identified.  Since 475 

the other factors in this solution are physically meaningful, this solution may be acceptable.  The 476 

only failing of this solution appears to be that it is missing an LOA factor, which is reflected by 477 

the high Q/Qexp contribution from m/z 58. 478 

In summary, the four-factor solutions of the 3-vector model included two families with 479 

potentially acceptable solutions.  One of these families included all four of the HR-MS factors, 480 

while the other had two instances of the BBOA factor and lacked a factor for LOA.  We now 481 

explore solutions with five or more factors to determine whether they might contain additional 482 

information, e.g., the four HR-MS factors and a new factor. 483 

S5.3  Solutions of the 3-vector model with five or more factors 484 

The five-factor solutions fall into three families (Fig. S6), and all contain factors that fail the 485 

criterion of being physically meaningful.  Each family has the m/z 43- and m/z 44-dominated 486 
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factors that represent a splitting of the OOA factor.  Only the family with the lowest Q/Qexp value 487 

has HOA, BBOA, and LOA factors.  The two families with the higher Q/Qexp values include split 488 

BBOA or HOA factors (Table 2).  Similar to the four-factor solution with split BBOA factors, 489 

the split HOA factor with the larger size distribution lacks signal in m/z 44, We therefore reject 490 

all of the five-factor solutions. 491 

The solutions of the 3-vector model with six factors fall into five families.  In all of these 492 

families, OOA is split into the factors dominated by m/z 43 and m/z 44.  The solution with the 493 

lowest Q/Qexp value also includes factors representing HOA, LOA, and the split BBOA factors.  494 

All of the families include split factors of HOA, BBOA, and/or the factor dominated by m/z 43.  495 

Some families include splits factors of both HOA and m/z 43, but no families have multiple 496 

instances of both BBOA and HOA factors.  We reject these solutions because they do not 497 

contain physically meaningful factors, or because their factors do not provide new information 498 

compared to solutions with fewer factors.   499 

The pattern of factors without additional physical meaning continues in solutions of the 3-vector 500 

model with seven or eight factors.  These solutions have a higher-dimensional solution space, 501 

which has more possibilities for local minima.  Accordingly, we observe more families than in 502 

the solutions with fewer factors, but these solutions include the same types of factors.  Multiple 503 

occurrences of some factors are more common in the solutions with seven and eight factors.  504 

However, no new factor types are observed in any of these solutions. 505 

In summary, the most acceptable solutions of the 3-vector model had four factors.  One of the 506 

four-factor solutions included all four of the factors in the HR-MS solution.  The other family 507 

included all of the HR-MS factors except LOA, but instead had two occurrences of the BBOA 508 

factor with similar mass spectra and time series but different size distributions.  Because we do 509 

not have sufficient support for the validity of two BBOA factors, we choose the family that had 510 

the four factors in the HR-MS solution as the best solution of the 3-vector model. 511 

  512 
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S6  Solutions of the unconstrained vector-matrix model 513 

Compared to the 3-vector solutions, solutions of the unconstrained vector-matrix model with the 514 

same number of factors have lower Q/Qexp values (Fig. 3).  The low Q/Qexp values for the vector-515 

matrix solutions imply that the vector-matrix model can fit more of the data than the 3-vector 516 

model.  In other words, the two vectors in the 3-vector model fit the size-time information less 517 

well than the matrix in the vector-matrix model.  The better fit of the vector-matrix model is 518 

consistent with this model’s greater degrees of freedom [Eqns. (8) and (9)].  However, the large 519 

number of degrees of freedom in the vector-matrix model also allows the model to fit a large 520 

amount of noise.  The ability to fit noise in this low SNR dataset distorts the mass spectra in the 521 

model solutions.   522 

No solutions of the vector-matrix model have mass spectra that are all physically meaningful 523 

(Table 3).  For example, in solutions with at least three factors, a single factor for OOA is 524 

obtained in only one solution.  This solution contains OOA, HOA, and LOA factors, but not a 525 

BBOA factor.  The omission of BBOA is surprising since this factor has a larger mass fraction 526 

than LOA when both are found in the same solution.  In addition, this solution’s increased Q/Qexp 527 

may indicate a poor fit.  However, in all other unconstrained vector-matrix solutions, the OOA is 528 

split into factors dominated by m/z 43 and m/z 44.  529 

Other non-physical mass spectra appear in solutions with four or more factors.  For example, a 530 

new, nonphysical factor not observed in the 3-vector solutions is dominated by m/z’s 67, 81, and 531 

95 (Fig. S12).  This series of m/z’s is present in mass spectra of dienes, alkynes, and 532 

cycloalkenes (McLafferty and Turecek, 1993), but the spectra of real compounds have a different 533 

distribution of the other peaks.  Thus, these spectra are not known to represent a real aerosol 534 

type.  No new, meaningful factors are identified in solutions with five or more factors.  535 

Consequently, we reject all of the unconstrained vector-matrix solutions.    536 
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S7  Constraining the vector-matrix model using multiple linear regression 537 

Multiple linear regression solves the same model as Eq. (S1), but the factor compositions (i.e., 538 

the cj values for p factors) must be provided a priori.  In this work, the p = 4 factor compositions 539 

came from the four HR-MS mass spectra.  The size-resolved mass spectrum measured at each 540 

time step was fit separately, i.e., 36 × 1366 fits are performed.  Regressions were performed in 541 

Igor Pro v. 6.21 (Wavemetrics, Portland, OR) using the Levenberg-Marquard least-squares 542 

method.   In addition, the fit coefficients (aj) were constrained to be non-negative, matching the 543 

constraints of the solutions of the vector-matrix model solved by ME-2.   544 

S7.1  Solutions of the multiple linear regression 545 

The multiple linear regression of the HR-MS factors to the size-resolved composition data failed 546 

to fit most of the mass spectra.  The regression was only successful (i.e., the matrix was not 547 

singular and the fit converged in the allowed number of steps) for 22.5% of the mass spectra.  548 

Most of these spectra are from particle size bins with diameters between 50 and 700 nm that 549 

have moderate mass spectral signal (0.5–2 µg/m3/decade dva).  In contrast, the fit did not 550 

converge for the majority of the spectra (77%).  The non-convergent fits include almost all of the 551 

data for particle size bins with dva < 50 nm and dva > 700 nm, and also particle size bins with dva 552 

between 50 and 700 nm that have low signal (< 0.5 µg/m3/log nm).   Finally, the remaining 0.5% 553 

of mass spectral fits failed because the fitting matrix was singular (i.e., the mass spectra are 554 

linearly dependent, so an infinite number of solutions, are possible).  The matrix singularity 555 

occurs during high-BBOA events, most likely because of near-colinearity between the BBOA 556 

and HOA spectra.  Unfortunately, these failures occur when we are the most interested in the 557 

composition of the aerosol and whether the size distribution is evolving.  In total, fitting the size-558 

resolved mass spectra with the HR-MS mass spectra by multiple linear regression fails for 77.5% 559 

of the points.  Furthermore, when the regression fits fail, no result is given for these points.  560 

Thus, this method is unable to provide factorization results from important, high-mass-loading 561 

events and cannot be used for this dataset. 562 

  563 
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S8  Choice of the number of factors in the solution of the constrained vector-matrix model 564 

In this section we explore solutions of the fully constrained (β = 0) vector-matrix model with 565 

four or more factors to determine whether new, physically meaningful factors can be identified.  566 

Each family of solutions is examined against the criteria outlined in Sect. 3.4.3 to determine 567 

whether the factors are physically meaningful. 568 

The four-factor solutions of the constrained vector-matrix model form one family.  The four 569 

factors are the a priori factors specified for this model and are described in Sect. 4.2. 570 

The five-factor solutions of the constrained vector-matrix model form only one family.  In these 571 

solutions, the fifth factor resembles HOA, but has a greater contribution from m/z 43, and the 572 

characteristic “picket fence” pattern of HOA is shifted to m/z’s ≥ 43 (Fig. S9).  This HOA-like 573 

spectrum may not be physically meaningful because it has only 6.5% of its signal in m/z’s < 43, 574 

compared to 33% for the HR-MS HOA spectrum and 30% for a “standard” HOA spectrum 575 

derived from PMF analyses of fifteen urban AMS datasets (Ng et al., 2011b).  Spectra with such 576 

a small fraction of signal in the low-mass fragments are not found in the AMS Spectral Database 577 

(Ulbrich et al., 2011) or in other electron impact spectra (McLafferty and Turecek, 1993).  In 578 

addition, there is evidence that this factor is a splitting of the HOA factor.  In fact, the sum of the 579 

size-distribution–time-series matrices from this factor and the HOA factor from this solution is 580 

very similar (R = 0.99) to the size-distribution–time-series matrix of HOA in the four-factor 581 

solution.  Thus we conclude that this factor has split the HOA and does not constitute a new, 582 

useful factor. 583 

The six-factor solution has two families.  The family with the lower Q/Qexp values has the four 584 

constrained factors, the split HOA factor found in the five-factor solution, and a factor dominated 585 

by m/z 43.  This m/z 43-dominated factor is mainly a split of the OOA factor, as was observed in 586 

the 3-vector solutions.  This factor also takes some mass from BBOA during the large BBOA 587 

event on 21 March.  From this evidence we conclude that this factor is not physically 588 

meaningful.  We therefore reject this family of solutions.  In the other family of six-factor 589 

solutions, the m/z 43 spectrum is replaced by a spectrum dominated by m/z 44.  The factor 590 

dominated by m/z 44 is also a split of the OOA factor, and its spectrum has even higher f44 (43%) 591 
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than the spectrum dominated by m/z 44 in the 3-vector solutions (f44 = 0.39) that was rejected as 592 

nonphysical.  Thus we conclude that this factor also fails the criterion of being physically 593 

meaningful.  We therefore reject the six-factor solutions.  The seven- and eight-factor solutions 594 

have more families, but also contain factors with unusual mass spectra that are not physically 595 

meaningful.  These solutions are also rejected.   596 

Thus, only the four-factor solution has factors that are all physically meaningful.  Therefore we 597 

choose the four-factor solution and explore the effect of increasing β to relax the constraint on 598 

the a priori spectra, as discussed in Sect.4.2.1.   599 

  600 
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 601 

Fig. S1.   Particle time-of-flight (PToF) data at (a) m/z 43 and (b) m/z 16.  The raw data (dashed 602 
line) have a high background, estimated from the shaded region.  The background estimation 603 
regions are selected for times before particles are expected to arrive and after no particles are 604 
expected to arrive at the vaporizer.  Subtracting the average background level gives the solid 605 
line.  When gas-phase signal is expected before particle arrival times, as for O+ at m/z 16 in (b), 606 
only the later background region is used for background subtraction.  Data collected at (a) 28 607 
March 2006, 10:32:31 LT, (b) 29 March 2006, 08:55:09 LT. 608 
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 610 

Fig. S2.  Fraction of points in the 3D data matrix whose error was increased to a minimum value 611 
of 1 ion and the average increase of those values for each (a) m/z and (b) size bin.  Average 612 
increases for m/z’s were highest for a few m/z’s > 85 (black lines).  Errors were increased more 613 
frequently (grey bars) for particle size bins with the largest and smallest diameters. 614 
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 616 

Fig. S3.  Average signal-to-noise ratio (SNR) of each m/z (left axis) at each particle size (bottom 617 
axis).  Size-m/z combinations are shaded by SNR.  Combinations with SNR < 1.5 are considered 618 
“weak” and are shaded in grey.  Combinations with SNR ≥ 1.5 are considered “strong” and are 619 
shaded in color.  White areas denote m/z’s that are not assigned organic signal. 620 
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 621 

 622 

Fig. S4.  Mass size distribution (dM/dlogdva) for the best solution of the constrained vector-623 

matrix model plotted vs. dva on a log scale on the y-axis and vs. sampling date on the x-axis.  624 

Grey pixels have zero signal. 625 
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 627 

Fig. S5.  Case study event on 24 March 2006.  (a) Mass size distributions (dM/dlogdva) of the 4 628 
factors in the best solution of the vector-matrix model, normalized so that each size distribution 629 
has unit area, plotted vs. dva on a log scale on the y-axis and vs. sampling time on the x-axis.  The 630 
data have been binomially smoothed by one point each in time and size.  (b) Mass size 631 
distributions (dM/dlogdva) that have not been normalized, plotted vs. dva on a log scale on the y-632 
axis and vs. sampling time on the x-axis.  In both panels, light-grey pixels have zero signal.   633 
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 635 

Fig. S6.  Q/Qexp values for 50 seed solutions of 4 factors (a–c) and 5 factors (d–f) grouped into families with similar factors.  636 
Unweighted Q/Qexp values are in the top row of each panel (blue markers), and Q/Qexp values as computed from the factorization are 637 
shown in the bottom row of each panel (red markers).  Solutions were calculated for (a, d) the 3-vector model solved with PMF3, (b, 638 
e) the 3-vector model solved with ME-2, and (c, f) the unconstrained vector-matrix model solved with ME-2.   639 
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 640 

 641 

Fig. S7.  Solution of the 3-vector model with 4 factors and the lowest Q/Qexp values.  Two of the factors have mass spectra dominated 642 

by m/z’s 44 and 43, and two of the factors represent HOA and biomass-burning organic aerosol BBOA.  (a) Mass spectrum of each 643 

factor plotted vs. ion mass-to-charge ratio (m/z).  Mass spectra are normalized to sum to 1.  (b) Mass size distribution (dM/dlogdva) 644 

plotted vs. particle vacuum-aerodynamic diameter (dva) on a log scale.  Size distributions are normalized so that the area under each 645 

curve sums to 1.  (c) Mass contribution of each factor plotted vs. sampling date. 646 
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 647 

 648 

Fig. S8.  Solution of the 3-vector model with 4 factors that include two with similar mass spectra.  The four factors are OOA, HOA, 649 

and two BBOA factors.  (a) Mass spectrum of each factor plotted vs. ion mass-to-charge ratio (m/z).  Mass spectra are normalized to 650 

sum to 1.  (b) Mass size distribution (dM/dlogdva) plotted vs. particle vacuum-aerodynamic diameter (dva) on a log scale.  Size 651 

distributions are normalized so that the area under each curve sums to 1.  (c) Mass contribution of each factor plotted vs. sampling 652 

date. 653 
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 655 

Fig. S9.  Five-factor solution of the constrained vector-matrix model.  Four a priori mass spectra 656 

were provided as starting guesses: OOA, HOA, and BBOA from the HR-MS solution, and LOA 657 

from the best solution of the 3-vector model (Fig. 3).  The a priori spectra were not allowed to 658 

vary (β = 0).  The fifth factor has a mass spectrum that is HOA-like, but with the signal shifted to 659 

m/z’s ≥ 43.  (a) Mass spectrum of each factor plotted vs. m/z.  Mass spectra are normalized to 660 

sum to 1.  (b) Mass size distribution (dM/dlogdva) plotted vs. dva on a log scale on the y-axis and 661 

vs. sampling date on the x-axis.  Grey pixels have zero signal.  662 
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Fig. S11.  Time to calculate each solution of the 3-vector and vector-matrix models of our 3.5 x 
106 element matrix with 1 to 8 factors using the PMF3 or ME-2 algorithm.  Each mark show the 
time to calculate a solution from a starting seed.  The calculation of each solution begins with 
loading the data and error matrices; this takes ~ 1 minute.  Details about the computer used for 
these calculations and the values of some ME-2 variables are shown in Table S8.  Values are 
meant only as a rough guide because many elements of the script file can impact the speed of 
calculation, and we generally did not try to optimize the running speed.   
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Fig. S12.  Four-factor solution of the unconstrained vector-matrix model, including a factor with 

a mass spectrum dominated by m/z’s 67, 81, and 95.  (a) Mass spectrum of each factor plotted vs. 

m/z.  Mass spectra are normalized to sum to 1.  (b) Mass size distribution (dM/dlogdva) plotted 

vs. dva on a log scale on the y-axis and vs. sampling date on the x-axis.  Grey pixels have zero 

signal. 
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a In these studies, the data were also arranged as a 3-dimensional (3D) matrix and factored using 

a 3D model.  Details of these datasets and models are presented in Table 1.
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes      
(μm) 

Sampling 
Time 

Factorization 
Techniques 

Seattle, WA 

2000-2001 

(Kim et al., 2004) DMPS  0.02–0.4 1 hr PMF, 
UNMIX 

Pittsburgh, PA 

2001 

(Zhou et al., 2004) SMPS 

APS 

 0.003–2.5  15 min PMF 

Pittsburgh, PA 

2001-2002 

(Zhou et al., 2005b) SMPS 

APS 

 0.003–2.5 15 min PMF 

Reston, VA (indoors) 

1999-2000  

(Ogulei et al., 2006a) SMPS 

APS 

 0.01–20 30 min PMF 

Egbert, ON 

Vancouver, BC 

Hamilton, ON 

Simcoe, ON 

1999-2003 

(Chan and Mozurkewich, 
2007a) 

SMPS  0.006–0.3 5 min APCA 

Buffalo, NY 

2004  

(Ogulei et al., 2007b) EEPS  0.006–0.3 1-5 sec PMF 

Erfurt, Germany 

1997-2001 

(Yue et al., 2008) DMPS 

OLAS 

 0.01 – 3.0 1 hr PMF 

London, UK 

2005 

(Beddows et al., 2009) SMPS  0.012–0.437, 
0.015–0.661  

1 hr, 6 hr Cluster 
Analysis 

Leipzig, Germany 

2005-2006 

(Costabile et al., 2009) TDMPS 

SMPS 

 0.003–0.9 30 min PCA 
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b) 

Acronym Sampling Technique 
APS Aerodynamic Particle Sizer 
DMPS Differential Mobility Particle Sizer 
EEPS Engine Exhaust Particle 

Spectrometer 
OLAS Optical Laser Aerosol Spectrometer 
SMPS Scanning Mobility Particle Sizer 
TDMPS Twin Differential Mobility Particle 

Sizer 

 

c) 

Acronym Factorization Technique 
APCA Absolute Principal Component 

Analysis 
PCA Principal Component Analysis 
PMF Positive Matrix Factorization 
UNMIX Unmix multivariate receptor model 

Table S2.  Details of research that reports application of 2D factorization techniques to aerosol size distributions.  Table S2b expands 

the acronyms of instrumental techniques shown in Table S2a.  Table S2c expands the acronyms of factorization techniques shown in 

Table S2a. 
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Copenhagen and 
Odense, Denmark 

1999 

(Wahlin et al., 2001) DMPS 

CPC 

CO, NOx 0.006–0.7  30 min COPREM 

Prague, Czech 
Republic 

2008 

(Thimmaiah et al., 2009) SMPS CO, NOx, 
SO2, O3, 

CH4 

0.018–0.723  1 hr PMF 

 

b) 

Acronym Sampling Technique 
CPC Condensation Particle Counter 
DMPS Differential Mobility Particle Sizer
SMPS Scanning Mobility Particle Sizer 

c) 

Acronym Factorization Technique 
COPREM Constrained Physical Receptor Model
PMF Positive Matrix Factorization 

 

Table S3.  Details of research that reports application of 2D factorization techniques to datasets pairing aerosol size distributions and 

gas-phase composition.  Table S3b expands the acronyms of instrumental techniques shown in Table S3a.  Table S3c expands the 

acronyms of factorization techniques shown in Table S3a. 
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Akjnaar, Netherlands 
Erfurt, Germany 
Helsinki, Finland 

1996-1997 

(Ruuskanen et al., 2001) DMPS 
SMPS 
OLAS 
EAS 
CPC 
Harvard Impactor 

PM2.5 mass 

Absorbance 

0.01–10 1 hr PCA 

Seattle, WA 

2000-2003 

(Larson et al., 2006) DMPS 
APS 
STN 

PM2.5 mass 

NH4
+, NO3

-, 
SO4

2-, K+, 
Na+ 

17 elements 

EC, OC 

0.02–5  24 hr PMF with 
additional 
constraints, 
solved with 
ME-2 

 

b) 

Acronym Sampling Technique 
APS Aerodynamic Particle Sizer 
CPC Condensation Particle Counter 
DMPS Differential Mobility Particle Sizer 
EAS Electrical Aerosol Spectrometer 
OLAS Optical Laser Aerosol Spectrometer
SMPS Scanning Mobility Particle Sizer 
STN Speciation Trends Network 
 

c) 

Acronym Factorization Technique 

PCA Principal Component Analysis
PMF Positive Matrix Factorization 
ME-2 Multilinear Engine 2 
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Table S4.  Details of research that reports application of 2D factorization techniques to datasets pairing aerosol size distributions and 

particle-phase composition.  Table S4b expands the acronyms of instrumental techniques shown in Table S4a.  Table S4c expands the 

acronyms of factorization techniques shown in Table S4a.  
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Pittsburgh, PA 

2001 

(Zhou et al., 2005a) SMPS 

APS 

SO4
2-, NO3

- 

11 elements 

O3, NO, NOx, 
SO2, CO 

0.003–2.5 15 min PLS, PMF 

Baltimore, MD 

2002 

(Ogulei et al., 2006b) SMPS 

APS 

SEAS 

PM2.5 mass 

NO3
-, SO4

2- 

EC, OC 

11 elements 

CO, NO, 
NO2, O3 

0.00965–2.458 1 hr PLS, PMF 

Rochester, NY 

2004-2005 

(Ogulei et al., 2007a) SMPS PM2.5 mass 

CO, O3, SO2 

0.012–0.470 1 hr PMF 

b) 

Acronym Sampling Technique 
APS Aerodynamic Particle Sizer 
SMPS Scanning Mobility Particle Sizer 
SEAS Semi-continuous Elements in Aerosol
c) 

Acronym Factorization Technique 
PLS Partial Least Squares 
PMF Positive Matrix Factorization
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Table S5.  Details of research that reports application of 2D factorization techniques to datasets that combine aerosol size distributions 

with gas- and and particle-phase composition.  Table S5b expands the acronyms of instrumental techniques shown in Table S5a.  

Table S5c expands the acronyms of factorization techniques shown in Table S5a.  



45 
 

Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Riverside, CA 

1991 

(Yakovleva et al., 
1999)a 

Stationary indoor 
monitors 

Stationary ambient 
monitors 

Personal exposure 
monitors 

18 elements PM2.5, PM10, 
personal 
PM10 

(2 sizes, 5 
types) 

12 hr PMF 

Houston, TX 

2000 

(Dillner et al., 2005) MOUDI 

 

SO4
2-, NO3

-, Cl-, 
NH4

+ 

EC, OM 

32 elements 

0.056–1.8 

(6 ranges) 

24 hr Cluster 
Analysis 

Gosan, Korea 

2002 

(Han et al., 2006) DRUM 19 elements 0.07–12 

(8 ranges) 

3 hr PMF 

Izmir, Turkey 

2004-2005 

(Yatkin and Bayram, 
2008) 

Dichotomous 
sampler 

16 elements PM2.5, PM10 

(2 sizes) 

24 hr PMF, CMB 

Münster, Germany 

2006-2007 

(Gietl and Klemm, 
2009) 

Berner impactor SO4
2-, NO3

-, Cl-, 
NH4

+, Na+, Ca2+, 
Mg2+ 

EC, OC 

0.053–10 

(5 ranges) 

5-7.5 hr PMF 

Athens, Greece 

2002 

(Karanasiou et al., 
2009) a 

Custom impactors 
aethalometer SO4

2- 

BC 

13 elements 

PM2, PM10–2 24 hr PMF 
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Sacramento, 
Modesto, and 
Bakersfield, CA 

2000-2001 

(Kleeman et al., 
2009) 

MOUDI 8 molecular 
organic tracers 

0.055–1.8 

(6 ranges) 

8, 12 hr Custom 
source 
apportionment 
algorithm 

Delhi, India 

2005-2006 

(Srivastava et al., 
2009) 

Cascade Impactor 11 metals 0.7–10.9 

(2 ranges) 

24 hr CMB 

PCA 
 

b) 

Acronym Sampling Technique 
DRUM Davis Rotating Unit for Monitoring 
MOUDI Micro-Orifice, Uniform Deposit Impactor

 
c) 
Acronym Factorization Technique 
CMB Chemical Mass Balance 
PCA Principal Component Analysis
PMF Positive Matrix Factorization 

 

Table S6.  Details of research that reports application of 2D factorization techniques to size-resolved aerosol composition data.  In 

these studies, the aerosol composition from each size range is factored separately.  Table S6b expands the acronyms of instrumental 

techniques shown in Table S6a.  Table S6c expands the acronyms of factorization techniques shown in Table S6a.   

a In these works, the data was also arranged as a 3D matrix and factored using a 3D model; details of these datasets and models are 

presented in Table 1.  
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Sampling Location 
and Year 

Citation Instrumentation Chemical 
Speciation 

Sizes (μm) Sampling 
Time 

Factorization 
Techniques 

Barcelona, Spain 

2003-2007 

(Amato et al., 2009) High-volume 
samplers NO3

-, Cl-, NH4
+ 

Total carbon 

22 elements 

PM10, PM2.5, 
PM1 

24 hr PMF with 
pulling 
equations in 
ME-2 

 
b) 
 
Acronym Factorization Technique 
ME-2 Multilinear Engine 2 
PMF Positive Matrix Factorization

Table S7.  Details of research that reports application of 2D factorization techniques to size-resolved aerosol composition data.  In 

these studies, the aerosol composition from all size ranges is combined in one matrix and factored simultaneously.  Table S7b expands 

the acronyms of factorization techniques shown in Table S7a. 
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Table S8.  Configuration of the computer and ME-2 algorithm used to solve the factorizations.  
No attempt was made to adjust the settings in the ME-2 control file to increase the speed of the 
calculations. 
 
Computer Specifications  
RAM 3.00 GB 
Processor Intel® XeonTM 3.2 GHz 
Operating System Windows XP 
  
ME-2 Control File Specifications  
Convergence test level 1 Qexpൈ 10-4 
Convergence test level 2 Qexp ൈ 2 ൈ 10-5 
Convergence test level 3 Qexp ൈ 10-5 
cgresets 10, 80, 1, 1, 2, 1 
Precondition mode 5 
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