Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 5, issue 9 | Copyright
Atmos. Meas. Tech., 5, 2211-2225, 2012
https://doi.org/10.5194/amt-5-2211-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Sep 2012

Research article | 13 Sep 2012

High-resolution NO2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer

C. Popp1, D. Brunner1, A. Damm2, M. Van Roozendael3, C. Fayt3, and B. Buchmann1 C. Popp et al.
  • 1Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
  • 2Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
  • 3Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, 1180 Brussels, Belgium

Abstract. We present and evaluate the retrieval of high spatial resolution maps of NO2 vertical column densities (VCD) from the Airborne Prism EXperiment (APEX) imaging spectrometer. APEX is a novel instrument providing airborne measurements of unique spectral and spatial resolution and coverage as well as high signal stability. In this study, we use spectrometer data acquired over Zurich, Switzerland, in the morning and late afternoon during a flight campaign on a cloud-free summer day in June 2010. NO2 VCD are derived with a two-step approach usually applied to satellite NO2 retrievals, i.e. a DOAS analysis followed by air mass factor calculations based on radiative transfer computations. Our analysis demonstrates that APEX is clearly sensitive to NO2 VCD above typical European tropospheric background abundances (>1 × 1015 molec cm−2). The two-dimensional maps of NO2 VCD reveal a very convincing spatial distribution with strong gradients around major NOx sources (e.g. Zurich airport, waste incinerator, motorways) and low NO2 in remote areas. The morning overflights resulted in generally higher NO2 VCD and a more distinct pattern than the afternoon overflights which can be attributed to the meteorological conditions prevailing during that day with stronger winds and hence larger dilution in the afternoon. The remotely sensed NO2 VCD are also in reasonably good agreement with ground-based in-situ measurements from air quality networks considering the limitations of comparing column integrals with point measurements. Airborne NO2 remote sensing using APEX will be valuable to detect NO2 emission sources, to provide input for NO2 emission modelling, and to establish links between in-situ measurements, air quality models, and satellite NO2 products.

Publications Copernicus
Download
Citation
Share