Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 6, 1257-1270, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
15 May 2013
Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system
K. Tsuboi1, H. Matsueda1, Y. Sawa1, Y. Niwa1, M. Nakamura2, D. Kuboike2, K. Saito2, H. Ohmori2, S. Iwatsubo2, H. Nishi2, Y. Hanamiya2, K. Tsuji2, and Y. Baba2 1Geochemical Research Department, Meteorological Research Institute, Tsukuba, Japan
2Japan Meteorological Agency, Tokyo, Japan
Abstract. We established and evaluated a flask air sampling system on a cargo C-130H aircraft, as well as a trace gas measurement system for the flask samples, as part of a new operational monitoring program of the Japan Meteorological Agency (JMA). Air samples were collected during each flight, between Kanagawa Prefecture (near Tokyo) and Minamitorishima (an island located nearly 2000 km southeast of Tokyo), from the air-conditioning system on the aircraft. Prior to the operational employment of the sampling system, a quality assurance test of the sampled air was made by specially coordinated flights at a low altitude of 1000 ft over Minamitorishima and comparing the flask values with those obtained at the surface. Based on our storage tests, the flask samples remained nearly stable until analyses. The trace gas measurement system has, in addition to the nondispersive infrared (NDIR) and vacuum ultraviolet resonance fluorescence (VURF) analyzers, two laser-based analyzers using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) and off-axis integrated cavity output spectroscopy (ICOS). Laboratory tests of the laser-based analyzers for measuring flask samples indicated relatively high reproducibility with overall precisions of less than ±0.06 ppm for CO2, ±0.68 ppb for CH4, ±0.36 ppb for CO, and ±0.03 ppb for N2O. Flask air sample measurements, conducted concurrently on different analyzers were compared. These comparisons showed a negligible bias in the averaged measurements between the laser-based measurement techniques and the other methods currently in use. We also estimated that there are no significant isotope effects for CH4, CO and N2O using standard gases with industrial isotopic compositions to calibrate the laser-based analyzers, but CO2 was found to possess isotope effects larger than its analytical precision.

Citation: Tsuboi, K., Matsueda, H., Sawa, Y., Niwa, Y., Nakamura, M., Kuboike, D., Saito, K., Ohmori, H., Iwatsubo, S., Nishi, H., Hanamiya, Y., Tsuji, K., and Baba, Y.: Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system, Atmos. Meas. Tech., 6, 1257-1270,, 2013.
Publications Copernicus