Articles | Volume 6, issue 6
https://doi.org/10.5194/amt-6-1521-2013
https://doi.org/10.5194/amt-6-1521-2013
Research article
 | 
06 Jun 2013
Research article |  | 06 Jun 2013

Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box-averaged mixing ratios

R. Sinreich, A. Merten, L. Molina, and R. Volkamer

Abstract. We present a novel parameterization method to convert multi-axis differential optical absorption spectroscopy (MAX-DOAS) differential slant column densities (dSCDs) into near-surface box-averaged volume mixing ratios. The approach is applicable inside the planetary boundary layer under conditions with significant aerosol load, and builds on the increased sensitivity of MAX-DOAS near the instrument altitude. It parameterizes radiative transfer model calculations and significantly reduces the computational effort, while retrieving ~ 1 degree of freedom. The biggest benefit of this method is that the retrieval of an aerosol profile, which usually is necessary for deriving a trace gas concentration from MAX-DOAS dSCDs, is not needed.

The method is applied to NO2 MAX-DOAS dSCDs recorded during the Mexico City Metropolitan Area 2006 (MCMA-2006) measurement campaign. The retrieved volume mixing ratios of two elevation angles (1° and 3°) are compared to volume mixing ratios measured by two long-path (LP)-DOAS instruments located at the same site. Measurements are found to agree well during times when vertical mixing is expected to be strong. However, inhomogeneities in the air mass above Mexico City can be detected by exploiting the different horizontal and vertical dimensions probed by the MAX-DOAS and LP-DOAS instruments. In particular, a vertical gradient in NO2 close to the ground can be observed in the afternoon, and is attributed to reduced mixing coupled with near-surface emission inside street canyons. The existence of a vertical gradient in the lower 250 m during parts of the day shows the general challenge of sampling the boundary layer in a representative way, and emphasizes the need of vertically resolved measurements.