Articles | Volume 6, issue 6
https://doi.org/10.5194/amt-6-1567-2013
https://doi.org/10.5194/amt-6-1567-2013
Research article
 | 
19 Jun 2013
Research article |  | 19 Jun 2013

Validation of the Meteosat storm detection and nowcasting system Cb-TRAM with lightning network data – Europe and South Africa

T. Zinner, C. Forster, E. de Coning, and H.-D. Betz

Abstract. In this paper, recent changes to the Meteosat thunderstorm TRacking And Monitoring algorithm (Cb-TRAM) are presented as well as a validation of Cb-TRAM against data from the European ground-based LIghtning NETwork (LINET) of Nowcast GmbH and the South African Weather Service Lightning Detection Network (SAWS LDN). Validation is conducted along the well-known skill measures probability of detection (POD) and false alarm ratio (FAR) on the basis of Meteosat/SEVIRI pixels as well as on the basis of thunderstorm objects. The values obtained demonstrate specific limitations of Cb-TRAM, as well as limitations of satellite methods in general which are based on thermal emission and solar reflectivity information from thunderstorm cloud tops.

Although the climatic conditions and the occurrence of thunderstorms are quite different for Europe and South Africa, quality score values are similar. Our conclusion is that Cb-TRAM provides robust results of well-defined quality for very different climatic regimes. The POD for a thunderstorm with intense lightning is about 80% during the day. The FAR for a Cb-TRAM detection which is not even close to intense lightning is about 50%. If only proximity to any lightning activity is required, FAR is much lower at about 15%. Pixel-based analysis shows that detected thunderstorm object size is not indiscriminately large, but well within physical limitations of the satellite method. Night-time POD and FAR are somewhat worse as the detection scheme does not use the high-resolution visible information during night-time hours. Nowcasting scores show useful values up to approximately 30 min in advance.

Download