Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 6, issue 8
Atmos. Meas. Tech., 6, 1903–1918, 2013
https://doi.org/10.5194/amt-6-1903-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 6, 1903–1918, 2013
https://doi.org/10.5194/amt-6-1903-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Aug 2013

Research article | 06 Aug 2013

Detection of convective initiation using Meteosat SEVIRI: implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM

D. Merk and T. Zinner

Related authors

Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations
D. Merk, H. Deneke, B. Pospichal, and P. Seifert
Atmos. Chem. Phys., 16, 933–952, https://doi.org/10.5194/acp-16-933-2016,https://doi.org/10.5194/acp-16-933-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020,https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020,https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Evaluation of the Aqua MODIS Collection 6.1 multilayer cloud detection algorithm through comparisons with CloudSat CPR and CALIPSO CALIOP products
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-448,https://doi.org/10.5194/amt-2019-448, 2020
Revised manuscript accepted for AMT
Short summary
Comparing lightning observations of the ground-based EUCLID network and the space-based ISS-LIS
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-435,https://doi.org/10.5194/amt-2019-435, 2020
Revised manuscript accepted for AMT
Short summary
Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar
Juan Huo, Daren Lu, Shu Duan, Yongheng Bi, and Bo Liu
Atmos. Meas. Tech., 13, 1–11, https://doi.org/10.5194/amt-13-1-2020,https://doi.org/10.5194/amt-13-1-2020, 2020
Short summary

Cited articles

Bedka, K. M. and Mecikalski, J. R.: Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows, J. Appl. Meteorol., 44, 1761–1772, 2005.
Berendes, T. A., Mecikalski, J. R., MacKenzie, W. M., Bedka, K. M., and Nair, U. S.: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering, J. Geophys. Res., 113, D20207, https://doi.org/10.1029/2008JD010287, 2008.
Carvalho, L. and Jones, C.: A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE), J. Appl. Meteorol., 40, 1683–1701, 2001.
Crook, N. A.: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields, Mon. Weather Rev., 124, 1768–1785, 1996.
Done, J., Davis, C. A., and Weisman, M.: The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model, Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72, 2004.
Publications Copernicus
Download
Citation