Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 6, issue 11 | Copyright

Special issue: Observations and modeling of aerosol and cloud properties...

Atmos. Meas. Tech., 6, 3301-3311, 2013
https://doi.org/10.5194/amt-6-3301-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Nov 2013

Research article | 28 Nov 2013

Multispectral information from TANSO-FTS instrument – Part 1: Application to greenhouse gases (CO2 and CH4) in clear sky conditions

H. Herbin, L. C. Labonnote, and P. Dubuisson H. Herbin et al.
  • Laboratoire d'Optique Atmosphérique (LOA), UMR8518, Université de Lille 1, 59655 Villeneuve d'Ascq cedex, France

Abstract. The Greenhouse gases Observing SATellite (GOSAT) mission, and in particular the Thermal And Near infrared Sensor for carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument, has the advantage of being able to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features allow studying the benefits of using multispectral measurements to improve the CO2 and CH4 retrievals.

In order to quantify the impact of the spectral synergy on the retrieval accuracy, we performed an information content (IC) analysis from simulated spectra corresponding to the three infrared bands of TANSO-FTS. The advantages and limitations of using thermal and shortwave infrared simultaneously are discussed according to surface type and state vector composition. The IC is then used to determine the most informative spectral channels for the simultaneous retrieval of CO2 and CH4. The results show that a channel selection spanning the three infrared bands can improve the computation time and retrieval accuracy. Therefore, a selection of less than 700 channels from the thermal infrared (TIR) and shortwave infrared (SWIR) bands allows retrieving CO2 and CH4 simultaneously with a similar accuracy to using all channels together to retrieve each gas separately.

Publications Copernicus
Special issue
Download
Citation
Share