Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 6, issue 2
Atmos. Meas. Tech., 6, 387–396, 2013
https://doi.org/10.5194/amt-6-387-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 6, 387–396, 2013
https://doi.org/10.5194/amt-6-387-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Feb 2013

Research article | 19 Feb 2013

An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range

D. Sakaizawa1, S. Kawakami1, M. Nakajima1, T. Tanaka2,*, I. Morino2, and O. Uchino2 D. Sakaizawa et al.
  • 1Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
  • 2National Institute for Environmental Studies, Tsukuba, Japan
  • *now at: Japan Aerospace Exploration Agency, Tsukuba, Japan

Abstract. Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (XCO2) and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer (LAS). The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on atmospheric CO2 measurements. A high correlation coefficient (R) of 0.987 between XCO2 observed by LAS and XCO2 calculated from in situ measurements was obtained. The averaged difference in XCO2 obtained from LAS and validation data was within 1.5 ppm for all spiral measurements. An interesting vertical profile was observed for both XCO2LAS and XCO2val, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where there are boundary-layer enhanced CO2 and aerosol in the winter, the difference of XCO2LAS to XCO2val is a negative bias of 1.5 ppm, and XCO2LAS is in agreement with XCO2val within the measurement precision of 2.4 ppm (1 SD).

Publications Copernicus
Download
Citation