Articles | Volume 6, issue 2
https://doi.org/10.5194/amt-6-387-2013
https://doi.org/10.5194/amt-6-387-2013
Research article
 | 
19 Feb 2013
Research article |  | 19 Feb 2013

An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range

D. Sakaizawa, S. Kawakami, M. Nakajima, T. Tanaka, I. Morino, and O. Uchino

Abstract. Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (XCO2) and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer (LAS). The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on atmospheric CO2 measurements. A high correlation coefficient (R) of 0.987 between XCO2 observed by LAS and XCO2 calculated from in situ measurements was obtained. The averaged difference in XCO2 obtained from LAS and validation data was within 1.5 ppm for all spiral measurements. An interesting vertical profile was observed for both XCO2LAS and XCO2val, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where there are boundary-layer enhanced CO2 and aerosol in the winter, the difference of XCO2LAS to XCO2val is a negative bias of 1.5 ppm, and XCO2LAS is in agreement with XCO2val within the measurement precision of 2.4 ppm (1 SD).

Download