Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 6, issue 3 | Copyright
Atmos. Meas. Tech., 6, 565-584, 2013
https://doi.org/10.5194/amt-6-565-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Mar 2013

Research article | 01 Mar 2013

Improvements to the retrieval of tropospheric NO2 from satellite – stratospheric correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2 simulations

A. Hilboll1, A. Richter1, A. Rozanov1, Ø. Hodnebrog2,*, A. Heckel1,3, S. Solberg4, F. Stordal2, and J. P. Burrows1 A. Hilboll et al.
  • 1Institute of Environmental Physics, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
  • 2University of Oslo, Oslo, Norway
  • 3Department of Geography, Swansea University, Swansea, UK
  • 4Norwegian Institute for Air Research, Kjeller, Norway
  • *now at: Center for International Climate and Environmental Research-Oslo (CICERO), Oslo, Norway

Abstract. Satellite measurements of atmospheric trace gases have proved to be an invaluable tool for monitoring the Earth system. When these measurements are to be used for assessing tropospheric emissions and pollution, as for example in the case of nadir measurements of nitrogen dioxide (NO2), it is necessary to separate the stratospheric from the tropospheric signal.

The SCIAMACHY instrument offers the unique opportunity to combine its measurements in limb- and nadir-viewing geometries into a tropospheric data product, using the limb measurements of the stratospheric NO2 abundances to correct the nadir measurements' total columns.

In this manuscript, we present a novel approach to limb/nadir matching, calculating one stratospheric NO2 value from limb measurements for every single nadir measurement, abandoning global coverage for the sake of spatial accuracy. For comparison, modelled stratospheric NO2 columns from the Oslo CTM2 are also evaluated for stratospheric correction.

Our study shows that stratospheric NO2 columns from SCIAMACHY limb measurements very well reflect stratospheric conditions. The zonal variability of the stratospheric NO2 field is captured by our matching algorithm, and the quality of the resulting tropospheric NO2 columns improves considerably. Both stratospheric datasets need to be adjusted to the level of the nadir measurements, because a time- and latitude-dependent bias to the measured nadir columns can be observed over clean regions. After this offset is removed, the two datasets agree remarkably well, and both stratospheric correction methods provide a significant improvement to the retrieval of tropospheric NO2 columns from the SCIAMACHY instrument.

Publications Copernicus
Download
Citation
Share