Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 7, 1395-1427, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
21 May 2014
Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability
B. Hassler1,2, I. Petropavlovskikh1,3, J. Staehelin4, T. August5, P. K. Bhartia6, C. Clerbaux7, D. Degenstein8, M. De Mazière9, B. M. Dinelli10, A. Dudhia11, G. Dufour12, S. M. Frith13, L. Froidevaux14, S. Godin-Beekmann15, J. Granville9, N. R. P. Harris16, K. Hoppel17, D. Hubert9, Y. Kasai18, M. J. Kurylo19, E. Kyrölä20, J.-C. Lambert9, P. F. Levelt21, C. T. McElroy22, R. D. McPeters6, R. Munro5, H. Nakajima23, A. Parrish24, P. Raspollini25, E. E. Remsberg26, K. H. Rosenlof2, A. Rozanov27, T. Sano28, Y. Sasano29, M. Shiotani28, H. G. J. Smit30, G. Stiller31, J. Tamminen20, D. W. Tarasick32, J. Urban33, R. J. van der A21, J. P. Veefkind21, C. Vigouroux9, T. von Clarmann31, C. von Savigny34, K. A. Walker35,36, M. Weber27, J. Wild37, and J. M. Zawodny26 1CIRES, University of Colorado at Boulder, Boulder, Colorado, USA
2NOAA/ESRL, Chemical Sciences Division, Boulder, Colorado, USA
3NOAA/ESRL, Global Monitoring Division, Boulder, Colorado, USA
4ETH-Zürich, Zürich, Switzerland
5EUMETSAT, Darmstadt, Germany
6NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
7UPMC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
8University of Saskatchewan, Saskatoon, Saskatchewan, Canada
9Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium
10ISAC-CNR, Bologna, Italy
11AOPP, Physics Department, University of Oxford, Oxford, UK
12LISA, UMR CNRS 7583, Université Paris-Est Créteil et Université Paris-Diderot, 27 Créteil, France
13Science Systems and Applications, Inc., NASA GSFC, Greenbelt, Maryland, USA
14Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
15Observatoire de Versailles Saint-Quentin-en-Yvelines, Guyancourt Cedex, France
16University of Cambridge, Chemistry Department, Cambridge, UK
17Remote Sensing Division, Naval Research Laboratory, Washington, D.C., USA
18National Institute of Information and Communications Technology, Tokyo, Japan
19Universities Space Research Association, Goddard Earth Sciences, Technology, and Research, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
20Finnish Meteorological Institute, Earth Observation, Helsinki, Finland
21Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
22Department of Earth and Space Science and Engineering (Lassonde School of Engineering), York University, Toronto, Canada
23National Institute for Environmental Studies, Tsukuba, Japan
24Department of Astronomy, University of Massachusetts, Amherst, Massachusetts, USA
25Istituto di Fisica Applicata "N. Carrara" (IFAC) del Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
26NASA Langley Research Center, Hampton, Virginia, USA
27Institute of Environmental Physics Remote Sensing (IUP/IFE), University of Bremen, Bremen, Germany
28Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
29Association of International Research Initiatives for Environmental Studies, Tokyo, Japan
30Research Centre Jülich, Institute for Energy and Climate Research: Troposphere (IEK-8), Jülich, Germany
31Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
32Environment Canada, Downsview, Ontario, Canada
33Chalmers University of Technology, Department of Earth and Space Sciences, Göteborg, Sweden
34Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
35Department of Physics, University of Toronto, Toronto, Ontario, Canada
36Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
37Innovim, LLC, NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland, USA
Abstract. Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified.

In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available.

This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.

Citation: Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T., Bhartia, P. K., Clerbaux, C., Degenstein, D., Mazière, M. D., Dinelli, B. M., Dudhia, A., Dufour, G., Frith, S. M., Froidevaux, L., Godin-Beekmann, S., Granville, J., Harris, N. R. P., Hoppel, K., Hubert, D., Kasai, Y., Kurylo, M. J., Kyrölä, E., Lambert, J.-C., Levelt, P. F., McElroy, C. T., McPeters, R. D., Munro, R., Nakajima, H., Parrish, A., Raspollini, P., Remsberg, E. E., Rosenlof, K. H., Rozanov, A., Sano, T., Sasano, Y., Shiotani, M., Smit, H. G. J., Stiller, G., Tamminen, J., Tarasick, D. W., Urban, J., van der A, R. J., Veefkind, J. P., Vigouroux, C., von Clarmann, T., von Savigny, C., Walker, K. A., Weber, M., Wild, J., and Zawodny, J. M.: Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability, Atmos. Meas. Tech., 7, 1395-1427,, 2014.
Publications Copernicus