Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 7, issue 6 | Copyright
Atmos. Meas. Tech., 7, 1597-1603, 2014
https://doi.org/10.5194/amt-7-1597-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jun 2014

Research article | 05 Jun 2014

Effects of solar activity on noise in CALIOP profiles above the South Atlantic Anomaly

V. Noel1, H. Chepfer1, C. Hoareau1, M. Reverdy1, and G. Cesana2 V. Noel et al.
  • 1CNRS, Laboratoire de Météorologie Dynamique UMR8539, Ecole Polytechnique, 91128 Palaiseau, France
  • 2Jet Propulsion Laboratory/NASA, Caltech, Pasadena, CA, USA

Abstract. We show that nighttime dark noise measurements from the spaceborne lidar CALIOP contain valuable information about the evolution of upwelling high-energy radiation levels. Above the South Atlantic Anomaly (SAA), CALIOP dark noise levels fluctuate by ±6% between 2006 and 2013, and follow the known anticorrelation of local particle flux with the 11-year cycle of solar activity (with a 1-year lag). By analyzing the geographic distribution of noisy profiles, we are able to reproduce known findings about the SAA region. Over the considered period, it shifts westward by 0.3° year−1, and changes in size by 6° meridionally and 2° zonally, becoming larger with weaker solar activity. All results are in strong agreement with previous works. We predict SAA noise levels will increase anew after 2014, and will affect future spaceborne lidar missions most near 2020.

Publications Copernicus
Download
Citation
Share