Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 6 | Copyright
Atmos. Meas. Tech., 7, 1825-1837, 2014
https://doi.org/10.5194/amt-7-1825-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Jun 2014

Research article | 25 Jun 2014

Performance of a mobile car platform for mean wind and turbulence measurements

D. Belušić1, D. H Lenschow2, and N. J. Tapper3 D. Belušić et al.
  • 1Monash University, School of Mathematical Sciences, Melbourne, Victoria, Australia
  • 2National Center for Atmospheric Research, Boulder, Colorado, USA
  • 3Monash University, School of Geography and Environmental Science, and Cooperative Research Centre for Water Sensitive Cities, Melbourne, Victoria, Australia

Abstract. The lack of adequate near-surface observations of the stable atmospheric boundary layer spatial structure motivated the development of an instrumented car for mobile turbulence measurements. The calibration and validation of the car measurements are performed using controlled field experiments and a comparison with an instrumented tower. The corrections required to remove the effects of the car motion are shown to be smaller and simpler than the corrections for research aircraft measurements. A car can therefore satisfactorily measure near-surface turbulence using relatively low-cost equipment. Other natural advantages of a car, such as the ability to drive on any road at any time of day or night and follow the terrain slope, as well as its low cost of operation, make it applicable to observations of a variety of flow regimes that cannot be achieved with the usual platforms, such as research aircraft or networks of flux towers.

Publications Copernicus
Download
Citation
Share