Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
  • CiteScore value: 3.37 CiteScore
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 7, issue 6 | Copyright
Atmos. Meas. Tech., 7, 1825-1837, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Jun 2014

Research article | 25 Jun 2014

Performance of a mobile car platform for mean wind and turbulence measurements

D. Belušić1, D. H Lenschow2, and N. J. Tapper3 D. Belušić et al.
  • 1Monash University, School of Mathematical Sciences, Melbourne, Victoria, Australia
  • 2National Center for Atmospheric Research, Boulder, Colorado, USA
  • 3Monash University, School of Geography and Environmental Science, and Cooperative Research Centre for Water Sensitive Cities, Melbourne, Victoria, Australia

Abstract. The lack of adequate near-surface observations of the stable atmospheric boundary layer spatial structure motivated the development of an instrumented car for mobile turbulence measurements. The calibration and validation of the car measurements are performed using controlled field experiments and a comparison with an instrumented tower. The corrections required to remove the effects of the car motion are shown to be smaller and simpler than the corrections for research aircraft measurements. A car can therefore satisfactorily measure near-surface turbulence using relatively low-cost equipment. Other natural advantages of a car, such as the ability to drive on any road at any time of day or night and follow the terrain slope, as well as its low cost of operation, make it applicable to observations of a variety of flow regimes that cannot be achieved with the usual platforms, such as research aircraft or networks of flux towers.

Publications Copernicus