Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 9 | Copyright

Special issue: GOME-2: calibration, algorithms, data products and...

Atmos. Meas. Tech., 7, 2937-2951, 2014
https://doi.org/10.5194/amt-7-2937-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Sep 2014

Research article | 12 Sep 2014

GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system

N. Hao1, M. E. Koukouli2, A. Inness3, P. Valks1, D. G. Loyola1, W. Zimmer1, D. S. Balis2, I. Zyrichidou2, M. Van Roozendael4, C. Lerot4, and R. J. D. Spurr5 N. Hao et al.
  • 1Institut für Methodik der Fernerkundung (IMF), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
  • 2Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
  • 3ECMWF, Reading, UK
  • 4Belgian Institute for Space Aeronomy, Brussels, Belgium
  • 5RT Solutions, Inc., Cambridge, Massachusetts, USA

Abstract. The two Global Ozone Monitoring Instrument (GOME-2) sensors operated in tandem are flying onboard EUMETSAT's (European Organisation for the Exploitation of Meteorological Satellites) MetOp-A and MetOp-B satellites, launched in October 2006 and September 2012 respectively. This paper presents the operational GOME-2/MetOp-A (GOME-2A) and GOME-2/MetOp-B (GOME-2B) total ozone products provided by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). These products are generated using the latest version of the GOME Data Processor (GDP version 4.7). The enhancements in GDP 4.7, including the application of Brion–Daumont–Malicet ozone absorption cross sections, are presented here. On a global scale, GOME-2B has the same high accuracy as the corresponding GOME-2A products. There is an excellent agreement between the ozone total columns from the two sensors, with GOME-2B values slightly lower with a mean difference of only 0.55±0.29%. First global validation results for 6 months of GOME-2B total ozone using ground-based measurements show that on average the GOME-2B total ozone data obtained with GDP 4.7 are slightly higher than, both, Dobson observations by about 2.0±1.0% and Brewer observations by about 1.0±0.8%. It is concluded that the total ozone columns (TOCs) provided by GOME-2A and GOME-2B are consistent and may be used simultaneously without introducing systematic effects, which has been illustrated for the Antarctic ozone hole on 18 October 2013. GOME-2A total ozone data have been used operationally in the Copernicus atmospheric service project MACC-II (Monitoring Atmospheric Composition and Climate – Interim Implementation) near-real-time (NRT) system since October 2013. The magnitude of the bias correction needed for assimilating GOME-2A ozone is reduced (to about −6 DU in the global mean) when the GOME-2 ozone retrieval algorithm changed to GDP 4.7.

Publications Copernicus
Special issue
Download
Citation
Share