Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 7, issue 9 | Copyright
Atmos. Meas. Tech., 7, 2967-2980, 2014
https://doi.org/10.5194/amt-7-2967-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Sep 2014

Research article | 16 Sep 2014

A horizontal mobile measuring system for atmospheric quantities

J. Hübner1, J. Olesch1, H. Falke2, F. X. Meixner3, and T. Foken1,4 J. Hübner et al.
  • 1University of Bayreuth, Department of Micrometeorology, 95440 Bayreuth, Germany
  • 2Gesellschaft für Akustik und Fahrzeugmeßwesen mbH, 08058 Zwickau, Germany
  • 3Max Planck Institute for Chemistry, Biogeochemistry Department, 55020 Mainz, Germany
  • 4Member of Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany

Abstract. A fully automatic horizontal mobile measuring system (HMMS) for atmospheric quantities has been developed. The HMMS is based on the drive mechanism of a garden railway system and can be installed at any location and along any measuring track. In addition to meteorological quantities (temperature, humidity and short-/long-wave down/upwelling radiation), HMMS also measures trace gas concentrations (carbon dioxide and ozone). While sufficient spatial resolution is a problem even for measurements on distributed towers, this could be easily achieved with the HMMS, which has been specifically developed to obtain higher information density about horizontal gradients in a heterogeneous forest ecosystem. There, horizontal gradients of meteorological quantities and trace gases could be immense, particularly at the transition from a dense forest to an open clearing, with large impact on meteorological parameters and exchange processes. Consequently, HMMS was firstly applied during the EGER IOP3 project (ExchanGE processes in mountainous Regions – Intense Observation Period 3) in the Fichtelgebirge Mountains (SE Germany) during summer 2011. At a constant 1 m above ground, the measuring track of the HMMS consisted of a straight line perpendicular to the forest edge, starting in the dense spruce forest and leading 75 m into an open clearing. Tags with bar codes, mounted every metre on the wooden substructure, allowed (a) keeping the speed of the HMMS constant (approx. 0.5 m s−1) and (b) operation of the HMMS in a continuous back and forth running mode. During EGER IOP3, HMMS was operational for almost 250 h. Results show that – due to considerably long response times (between 4 and 20 s) of commercial temperature, humidity and the radiation sensors – true spatial variations of the meteorological quantities could not be adequately captured (mainly at the forest edge). Corresponding dynamical (spatial) errors of the measurement values were corrected on the basis of well-defined individual response times of the sensors and application of a linear correction algorithm. Due to the very short response times (≤ 1 s) of the applied commercial CO2 and O3 analysers, dynamical errors for the trace gas data were negligible and no corrections were done.

Publications Copernicus
Download
Citation
Share