Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 9
Atmos. Meas. Tech., 7, 3085–3093, 2014
https://doi.org/10.5194/amt-7-3085-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 7, 3085–3093, 2014
https://doi.org/10.5194/amt-7-3085-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Sep 2014

Research article | 23 Sep 2014

Aircraft testing of the new Blunt-body Aerosol Sampler (BASE)

A. Moharreri1, L. Craig1, P. Dubey1, D. C. Rogers2, and S. Dhaniyala1 A. Moharreri et al.
  • 1Mechanical and Aeronautical Engineering Department, Clarkson University, Potsdam, NY, USA
  • 2Earth Observing Laboratory, NCAR/RAF, Broomfield, CO, USA

Abstract. There is limited understanding of the role of aerosols in the formation and modification of clouds, partly due to inadequate data on such systems. Aircraft-based aerosol measurements in the presence of cloud particles have proven to be challenging because of the problem of cloud droplet/ice particle shatter and the generation of secondary artifact particles that contaminate aerosol samples. Recently, the design of a new aircraft inlet, called the Blunt-body Aerosol Sampler (BASE), which enables sampling of interstitial aerosol particles, was introduced. Numerical modeling results and laboratory test data suggested that the BASE inlet should sample interstitial particles with minimal shatter particle contamination. Here, the sampling performance of the inlet is established from aircraft-based measurements. Initial aircraft test results obtained during the PLOWS (Profiling of Winter Storms) campaign indicated two problems with the original BASE design: separated flows around the BASE at high altitudes and a significant shatter problem when sampling in drizzle. The test data were used to improve the accuracy of flow and particle trajectory modeling around the inlet, and the results from the improved flow model were used to guide design modifications of the BASE to overcome the problems identified in its initial deployment. The performance of the modified BASE was tested during the ICE–T (Ice in Clouds Experiment – Tropics) campaign, and the inlet was seen to provide near shatter-free measurements in a wide range of cloud conditions. The initial aircraft test results, design modifications, and the performance characteristics of the BASE relative to another interstitial inlet, the submicron aerosol inlet (SMAI), are presented.

Publications Copernicus
Download
Citation