Supplement of

Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

K. C. Kaku et al.

Correspondence to: K. C. Kaku (kkaku@csc.com)
Content. The following supplementary material shows graphical representation of the agreement of the measured scattering coefficients and the SDA+ -predicted scattering coefficients for the ACE-Asia and VOCALS field campaign.

Figure S-1. A time series (a) of the measured Submicron Mode (SM) and SDA+-calculated Fine Mode (FM) scattering coefficient aboard the R/V Ronald H. Brown (PMEL) during the ACE-Asia campaign. Bottom graph (b) shows Fine Mode Fraction scattering predicted by SDA+ versus the equivalent Submicron Fraction derived from nephelometer scattering coefficient
measurements. A one-to-one line is provided for reference in Figures S-1(b). Fit statistics are found in Table 2.

Figure S-2. A time series (a) of the measured Submicron Mode (SM) and SDA+-calculated Fine Mode (FM) scattering coefficient aboard the R/V Ronald H. Brown (PMEL) during the VOCALS campaign. Bottom graph (b) shows Fine Mode Fraction scattering predicted by SDA+ versus the equivalent Submicron Fraction derived from nephelometer extinction coefficient
measurements. A one-to-one line is provided for reference in Figures S-2(b). Fit statistics are found in Table 3.

Figure S-3. A time series (a) of the corrected measured Submicron Mode (SM) and SDA+-calculated Fine Mode (FM) scattering coefficient aboard the R/V Ronald H. Brown (PMEL) during the VOCALS campaign. Bottom graph (b) shows Fine Mode Fraction scattering predicted
by SDA+ versus the equivalent Submicron Fraction derived from corrected nephelometer scattering coefficient measurements. A one-to-one line is provided for reference in Figures S-3(b). Fit statistics are found in Table 3.