Articles | Volume 7, issue 11
https://doi.org/10.5194/amt-7-3653-2014
https://doi.org/10.5194/amt-7-3653-2014
Research article
 | 
06 Nov 2014
Research article |  | 06 Nov 2014

Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

B. Buchholz, A. Afchine, and V. Ebert

Related authors

Quantifying uncertainties from mobile-laboratory-derived emissions of well pads using inverse Gaussian methods
Dana R. Caulton, Qi Li, Elie Bou-Zeid, Jeffrey P. Fitts, Levi M. Golston, Da Pan, Jessica Lu, Haley M. Lane, Bernhard Buchholz, Xuehui Guo, James McSpiritt, Lars Wendt, and Mark A. Zondlo
Atmos. Chem. Phys., 18, 15145–15168, https://doi.org/10.5194/acp-18-15145-2018,https://doi.org/10.5194/acp-18-15145-2018, 2018
Short summary
Evaluation of the IAGOS-Core GHG package H2O measurements during the DENCHAR airborne inter-comparison campaign in 2011
Annette Filges, Christoph Gerbig, Chris W. Rella, John Hoffnagle, Herman Smit, Martina Krämer, Nicole Spelten, Christian Rolf, Zoltán Bozóki, Bernhard Buchholz, and Volker Ebert
Atmos. Meas. Tech., 11, 5279–5297, https://doi.org/10.5194/amt-11-5279-2018,https://doi.org/10.5194/amt-11-5279-2018, 2018
Ice particle sampling from aircraft – influence of the probing position on the ice water content
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018,https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator
Bernhard Buchholz and Volker Ebert
Atmos. Meas. Tech., 11, 459–471, https://doi.org/10.5194/amt-11-459-2018,https://doi.org/10.5194/amt-11-459-2018, 2018
Short summary
HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data
Bernhard Buchholz, Armin Afchine, Alexander Klein, Cornelius Schiller, Martina Krämer, and Volker Ebert
Atmos. Meas. Tech., 10, 35–57, https://doi.org/10.5194/amt-10-35-2017,https://doi.org/10.5194/amt-10-35-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023,https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
A new reference-quality precipitation gauge wind shield
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023,https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023,https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023,https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Troels Friis Pedersen and Jan-Åke Dahlberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-1291,https://doi.org/10.5194/egusphere-2023-1291, 2023
Short summary

Cited articles

Armstrong, B.: Spectrum line profiles: the Voigt function, J. Quant. Spectrosc. Ra., 7, 61–88, https://doi.org/10.1016/0022-4073(67)90057-X, 1967.
Brown, M., Barone, D., Barhorst, T., Eklund, D., Gruber, M., Mathur, T., and Milligan, R.: TDLAS-based measurements of temperature, pressure, and velocity in the isolator of an axisymmetric scramjet, in: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 6989, https://doi.org/10.2514/6.2010-6989, 2010.
Buchholz, B., Afchine, A., Klein, A., Barthel, J., Kallweit, S., Klostermann, T., Krämer, M., Schiller, C., and Ebert, V.: Simultaneous Gas-Phase and Total Water Detection for Airborne Applications with a Multi-Channel TDL Spectrometer at 1.4 μm and 2.6 μm, Geophys. Res. Abstr., 15(EGU2013-7311-3), EGU General Assembly 2013, Vienna, Austria, 2013a.
Buchholz, B., Kühnreich, B., Smit, H. G. J., and Ebert, V.: Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison, Appl. Phys. B, 110, 249–262, https://doi.org/10.1007/s00340-012-5143-1, 2013b.
Buchholz, B., Böse, N., and Ebert, V.: Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard, Appl. Phys. B, 116, 883–899, https://doi.org/10.1007/s00340-014-5775-4, 2014.
Download