Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 11
Atmos. Meas. Tech., 7, 3935–3946, 2014
https://doi.org/10.5194/amt-7-3935-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 7, 3935–3946, 2014
https://doi.org/10.5194/amt-7-3935-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Nov 2014

Research article | 26 Nov 2014

Assimilation of GNSS radio occultation observations in GRAPES

Y. Liu1,3 and J. Xue2 Y. Liu and J. Xue
  • 1Numerical Weather Prediction Center, China Meteorology Administration, Beijing, 100081, China
  • 2State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorology Administration, Beijing 100081, China
  • 3National Meteorological Center, China Meteorological Administration, No. 46 South Zhongguancun Street, Haidian District, Beijing 100081, China

Abstract. This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES, not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Environmental Prediction) analyses. Finally, as a result of the new on-board payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.

Publications Copernicus
Download
Citation