Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 12
Atmos. Meas. Tech., 7, 4123–4132, 2014
https://doi.org/10.5194/amt-7-4123-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 7, 4123–4132, 2014
https://doi.org/10.5194/amt-7-4123-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Dec 2014

Research article | 03 Dec 2014

Analysis of internal gravity waves with GPS RO density profiles

P. Šácha et al.
Related authors  
Interannual variability in the gravity wave drag – vertical coupling and possible climate links
Petr Šácha, Jiri Miksovsky, and Petr Pisoft
Earth Syst. Dynam., 9, 647–661, https://doi.org/10.5194/esd-9-647-2018,https://doi.org/10.5194/esd-9-647-2018, 2018
Short summary
Revisiting internal gravity waves analysis using GPS RO density profiles: comparison with temperature profiles and application for wave field stability study
Petr Pisoft, Petr Sacha, Jiri Miksovsky, Peter Huszar, Barbara Scherllin-Pirscher, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 515–527, https://doi.org/10.5194/amt-11-515-2018,https://doi.org/10.5194/amt-11-515-2018, 2018
Short summary
Influence of the spatial distribution of gravity wave activity on the middle atmospheric dynamics
Petr Šácha, Friederike Lilienthal, Christoph Jacobi, and Petr Pišoft
Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016,https://doi.org/10.5194/acp-16-15755-2016, 2016
Short summary
Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015,https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing
Yu Shi, Fei Hu, Guangqiang Fan, and Zhe Zhang
Atmos. Meas. Tech., 12, 4887–4901, https://doi.org/10.5194/amt-12-4887-2019,https://doi.org/10.5194/amt-12-4887-2019, 2019
Short summary
Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the Eastern North Atlantic ARM observatory
Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias
Atmos. Meas. Tech., 12, 4931–4947, https://doi.org/10.5194/amt-12-4931-2019,https://doi.org/10.5194/amt-12-4931-2019, 2019
Short summary
Assimilation of GNSS tomography products into the Weather Research and Forecasting model using radio occultation data assimilation operator
Natalia Hanna, Estera Trzcina, Gregor Möller, Witold Rohm, and Robert Weber
Atmos. Meas. Tech., 12, 4829–4848, https://doi.org/10.5194/amt-12-4829-2019,https://doi.org/10.5194/amt-12-4829-2019, 2019
Short summary
Tropopause altitude determination from temperature profile measurements of reduced vertical resolution
Nils König, Peter Braesicke, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 4113–4129, https://doi.org/10.5194/amt-12-4113-2019,https://doi.org/10.5194/amt-12-4113-2019, 2019
Short summary
A generalized simulation capability for rotating- beam scatterometers
Zhen Li, Ad Stoffelen, and Anton Verhoef
Atmos. Meas. Tech., 12, 3573–3594, https://doi.org/10.5194/amt-12-3573-2019,https://doi.org/10.5194/amt-12-3573-2019, 2019
Short summary
Cited articles  
Alexander, P., de la Torre, A., Llamedo, P., Hierro, R., Schmidt, T., Haser, A., and Wickert, J.: A method to improve the determination of wave perturbations close to the tropopause by using a digital filter, Atmos. Meas. Tech., 4, 1777–1784, https://doi.org/10.5194/amt-4-1777-2011, 2011.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., and Thompson, D. C.: THE COSMIC/FORMOSAT-3 MISSION Early Results, B. Am. Meteorol. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008.
Chane-Ming, F., Molinaro, F., Leveau, J., Keckhut, P., and Hauchecorne, A.: Analysis of gravity waves in the tropical middle atmosphere over La Reunion Island (21° S, 55° E) with lidar using wavelet techniques, Ann. Geophys., 18, 485–498, https://doi.org/10.1007/s00585-000-0485-0, 2000.
Chiu, Y. T. and Ching, B. K.: The response of atmospheric and lower ionospheric layer structures to gravity waves, Geophys. Res. Lett., 5, 539–542, 1978.
Cushman-Roisin, B.: Introduction to Geophysical Fluid Dynamics, Prentice Hall, Englewood Cliff , New Jersey 07632, 1994.
Publications Copernicus
Download
Short summary
In the presented paper, we introduce a method for the density background separation and a methodology for internal gravity waves analysis using the GPS RO density profiles. Various background choices are discussed, and the correspondence between analytical forms of the density and dry temperature background profiles is examined. Finally the advantages of the density instead of dry temperature GPS RO data utilization are listed (e.g. inclusion of non-hydrostatic waves).
In the presented paper, we introduce a method for the density background separation and a...
Citation