Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 7, 4491-4505, 2014
https://doi.org/10.5194/amt-7-4491-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
18 Dec 2014
Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA
R. Rüfenacht1, A. Murk1, N. Kämpfer1, P. Eriksson2, and S. A. Buehler3,* 1Institute of Applied Physics, University of Bern, Bern, Switzerland
2Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden
3Division of Space Technology, SRT, Luleå University of Technology, Kiruna, Sweden
*now at: Meteorological Institute, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
Abstract. WIRA is a ground-based microwave Doppler spectroradiometer specifically designed for the measurement of profiles of horizontal wind in the upper stratosphere and lower mesosphere region where no other continuously running measurement technique exists. A proof of principle has been delivered in a previous publication. A technical upgrade including a new high-frequency amplifier and sideband filter has improved the signal to noise ratio by a factor of 2.4. Since this upgrade the full horizontal wind field comprising zonal and meridional wind profiles is continuously measured. A completely new retrieval based on optimal estimation has been set up. Its characteristics are detailed in the present paper.

Since the start of the routine operation of the first prototype in September 2010, WIRA has been measuring at four different locations at polar, mid- and tropical latitudes (67°22' N/26°38' E, 46°57' N/7°26' E, 43°56' N/5°43' E and 21°04' S/55°23' E) for time periods between 5.5 and 11 months. The data presented in this paper are daily average wind profiles with typical uncertainties and resolutions of 10 to 20 m s−1 and 10 to 16 km, respectively. A comparison between the data series from WIRA and European Centre for Medium-Range Weather Forecasts (ECMWF) model data revealed agreement within 10% in the stratospheric zonal wind. The meridional wind profiles agree within their error bars over the entire sensitive altitude range of WIRA. However, significant differences in the mesospheric zonal wind speed of up to 50% have been found.


Citation: Rüfenacht, R., Murk, A., Kämpfer, N., Eriksson, P., and Buehler, S. A.: Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA, Atmos. Meas. Tech., 7, 4491-4505, https://doi.org/10.5194/amt-7-4491-2014, 2014.
Publications Copernicus
Download
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere...
Share