Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 7, issue 2
Atmos. Meas. Tech., 7, 507–522, 2014
https://doi.org/10.5194/amt-7-507-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 7, 507–522, 2014
https://doi.org/10.5194/amt-7-507-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Feb 2014

Research article | 13 Feb 2014

Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra

L. A. Rieger, A. E. Bourassa, and D. A. Degenstein L. A. Rieger et al.
  • Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatchewan, Canada

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) onboard the Odin satellite has now taken over a decade of limb scatter measurements that have been used to retrieve the version 5 stratospheric aerosol extinction product. This product is retrieved using a representative particle size distribution to calculate scattering cross sections and scattering phase functions for the forward model calculations. In this work the information content of OSIRIS measurements with respect to stratospheric aerosol is systematically examined for the purpose of retrieving particle size information along with the extinction coefficient. The benefit of using measurements at different wavelengths and scattering angles in the retrieval is studied, and it is found that incorporation of the 1530 nm radiance measurement is key for a robust retrieval of particle size information. It is also found that using OSIRIS measurements at the different solar geometries available on the Odin orbit simultaneously provides little additional benefit. Based on these results, an improved aerosol retrieval algorithm is developed that couples the retrieval of aerosol extinction and mode radius of a log-normal particle size distribution. Comparison of these results with coincident measurements from SAGE III shows agreement in retrieved extinction to within approximately 10% over the bulk of the aerosol layer, which is comparable to version 5. The retrieved particle size, when converted to Ångström coefficient, shows good qualitative agreement with SAGE II measurements made at somewhat shorter wavelengths.

Publications Copernicus
Download
Citation